{"title":"预测氮、磷、钾(NPK)施肥需求的CNN-LSTM混合模型:结合卫星光谱指数和田间小气候数据","authors":"Abdellatif Moussaid, Yousra Gamoussi, Hamza Briak","doi":"10.1016/j.iot.2025.101746","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a deep learning approach to predict nitrogen (N), phosphorus (P), and potassium (K) fertilization requirements using satellite and climate data. A hybrid CNN-LSTM model was developed to combine spatial features of Sentinel-2 vegetation indices (NDVI, NDRE, MSAVI, RECI) with temporal daily climate variables, including temperature, humidity, precipitation, wind speed, and solar radiation.</div><div>The model was trained on 3,208 samples integrating spectral, climatic, and field information such as parcel size and observation dates, and tested on a fully separated five-month period. The evaluation on the normalized scale demonstrated strong performance, with test results as follows: for nitrogen, MSE <span><math><mo>=</mo></math></span> 0.0208, MAE <span><math><mo>=</mo></math></span> 0.1132, and <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>9542</mn></mrow></math></span>; for phosphorus, MSE <span><math><mo>=</mo></math></span> 0.0281, MAE <span><math><mo>=</mo></math></span> 0.1313, and <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>9480</mn></mrow></math></span>; and for potassium, MSE <span><math><mo>=</mo></math></span> 0.0225, MAE <span><math><mo>=</mo></math></span> 0.1154, and <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>9474</mn></mrow></math></span>. The model’s stability was further confirmed by consistent predictions across four individual months. This approach effectively integrates multimodal data for robust nutrient forecasting and can assist farmers in optimizing fertilization strategies. The outcomes support improved crop management, reduced environmental impact, and increased yields, especially in regions with limited ground data.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"34 ","pages":"Article 101746"},"PeriodicalIF":7.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid CNN-LSTM model for predicting nitrogen, phosphorus, and potassium (NPK) fertilization requirements: Integrating satellite spectral indices with field microclimate data\",\"authors\":\"Abdellatif Moussaid, Yousra Gamoussi, Hamza Briak\",\"doi\":\"10.1016/j.iot.2025.101746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a deep learning approach to predict nitrogen (N), phosphorus (P), and potassium (K) fertilization requirements using satellite and climate data. A hybrid CNN-LSTM model was developed to combine spatial features of Sentinel-2 vegetation indices (NDVI, NDRE, MSAVI, RECI) with temporal daily climate variables, including temperature, humidity, precipitation, wind speed, and solar radiation.</div><div>The model was trained on 3,208 samples integrating spectral, climatic, and field information such as parcel size and observation dates, and tested on a fully separated five-month period. The evaluation on the normalized scale demonstrated strong performance, with test results as follows: for nitrogen, MSE <span><math><mo>=</mo></math></span> 0.0208, MAE <span><math><mo>=</mo></math></span> 0.1132, and <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>9542</mn></mrow></math></span>; for phosphorus, MSE <span><math><mo>=</mo></math></span> 0.0281, MAE <span><math><mo>=</mo></math></span> 0.1313, and <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>9480</mn></mrow></math></span>; and for potassium, MSE <span><math><mo>=</mo></math></span> 0.0225, MAE <span><math><mo>=</mo></math></span> 0.1154, and <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>0</mn><mo>.</mo><mn>9474</mn></mrow></math></span>. The model’s stability was further confirmed by consistent predictions across four individual months. This approach effectively integrates multimodal data for robust nutrient forecasting and can assist farmers in optimizing fertilization strategies. The outcomes support improved crop management, reduced environmental impact, and increased yields, especially in regions with limited ground data.</div></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"34 \",\"pages\":\"Article 101746\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660525002604\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525002604","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
本研究提出了一种利用卫星和气候数据预测氮(N)、磷(P)和钾(K)施肥需求的深度学习方法。将Sentinel-2植被指数(NDVI、NDRE、MSAVI、RECI)的空间特征与温度、湿度、降水、风速、太阳辐射等时间日气候变量相结合,建立了CNN-LSTM混合模型。该模型在3208个样本上进行了训练,整合了光谱、气候和田野信息(如包裹大小和观测日期),并在完全分离的5个月周期内进行了测试。在归一化量表上的评价表现出较强的性能,检验结果如下:对于氮,MSE = 0.0208, MAE = 0.1132, R2=0.9542;磷的MSE = 0.0281, MAE = 0.1313, R2=0.9480;钾的MSE = 0.0225, MAE = 0.1154, R2=0.9474。该模型的稳定性进一步得到了四个月的一致预测的证实。这种方法有效地整合了多模态数据,用于稳健的养分预测,并可以帮助农民优化施肥策略。研究结果支持改善作物管理、减少环境影响和提高产量,特别是在地面数据有限的地区。
Hybrid CNN-LSTM model for predicting nitrogen, phosphorus, and potassium (NPK) fertilization requirements: Integrating satellite spectral indices with field microclimate data
This study presents a deep learning approach to predict nitrogen (N), phosphorus (P), and potassium (K) fertilization requirements using satellite and climate data. A hybrid CNN-LSTM model was developed to combine spatial features of Sentinel-2 vegetation indices (NDVI, NDRE, MSAVI, RECI) with temporal daily climate variables, including temperature, humidity, precipitation, wind speed, and solar radiation.
The model was trained on 3,208 samples integrating spectral, climatic, and field information such as parcel size and observation dates, and tested on a fully separated five-month period. The evaluation on the normalized scale demonstrated strong performance, with test results as follows: for nitrogen, MSE 0.0208, MAE 0.1132, and ; for phosphorus, MSE 0.0281, MAE 0.1313, and ; and for potassium, MSE 0.0225, MAE 0.1154, and . The model’s stability was further confirmed by consistent predictions across four individual months. This approach effectively integrates multimodal data for robust nutrient forecasting and can assist farmers in optimizing fertilization strategies. The outcomes support improved crop management, reduced environmental impact, and increased yields, especially in regions with limited ground data.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.