{"title":"生物物理,细胞和小鼠模型方法来研究卵泡发生的机械调节","authors":"Sara Pietroforte, Farners Amargant","doi":"10.1016/j.semcdb.2025.103649","DOIUrl":null,"url":null,"abstract":"<div><div>Folliculogenesis, which is the process by which ovarian follicles develop to support oogenesis and hormone production, is essential for female fertility. Although hormonal and biochemical signaling pathways regulating folliculogenesis have been extensively studied, increasing evidence suggests that mechanical cues within the ovary also play a critical role. The ovary is composed of follicles, corpora lutea, and stroma, each contributing to a biomechanical microenvironment that might change across the reproductive lifespan. Additionally, the spatial organization of the ovary, with a collagen-rich cortex and a softer medulla, may influence follicle activation and growth. This review explores the hypothesis that mechanical properties of the ovary regulate folliculogenesis, integrating current knowledge on ovarian architecture, extracellular matrix composition, and mechanotransduction pathways. We highlight recent findings supporting mechanical regulation of folliculogenesis, discuss contradictory data, and describe the tools and models used to investigate this concept. By considering mechanical forces alongside hormonal and biochemical signals, we propose a more integrated view of the factors governing follicle development, with implications for understanding ovarian physiology and pathology.</div></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"174 ","pages":"Article 103649"},"PeriodicalIF":6.0000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biophysical, cellular, and mouse model approaches to investigate the mechanical regulation of folliculogenesis\",\"authors\":\"Sara Pietroforte, Farners Amargant\",\"doi\":\"10.1016/j.semcdb.2025.103649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Folliculogenesis, which is the process by which ovarian follicles develop to support oogenesis and hormone production, is essential for female fertility. Although hormonal and biochemical signaling pathways regulating folliculogenesis have been extensively studied, increasing evidence suggests that mechanical cues within the ovary also play a critical role. The ovary is composed of follicles, corpora lutea, and stroma, each contributing to a biomechanical microenvironment that might change across the reproductive lifespan. Additionally, the spatial organization of the ovary, with a collagen-rich cortex and a softer medulla, may influence follicle activation and growth. This review explores the hypothesis that mechanical properties of the ovary regulate folliculogenesis, integrating current knowledge on ovarian architecture, extracellular matrix composition, and mechanotransduction pathways. We highlight recent findings supporting mechanical regulation of folliculogenesis, discuss contradictory data, and describe the tools and models used to investigate this concept. By considering mechanical forces alongside hormonal and biochemical signals, we propose a more integrated view of the factors governing follicle development, with implications for understanding ovarian physiology and pathology.</div></div>\",\"PeriodicalId\":21735,\"journal\":{\"name\":\"Seminars in cell & developmental biology\",\"volume\":\"174 \",\"pages\":\"Article 103649\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in cell & developmental biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S108495212500059X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cell & developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S108495212500059X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Biophysical, cellular, and mouse model approaches to investigate the mechanical regulation of folliculogenesis
Folliculogenesis, which is the process by which ovarian follicles develop to support oogenesis and hormone production, is essential for female fertility. Although hormonal and biochemical signaling pathways regulating folliculogenesis have been extensively studied, increasing evidence suggests that mechanical cues within the ovary also play a critical role. The ovary is composed of follicles, corpora lutea, and stroma, each contributing to a biomechanical microenvironment that might change across the reproductive lifespan. Additionally, the spatial organization of the ovary, with a collagen-rich cortex and a softer medulla, may influence follicle activation and growth. This review explores the hypothesis that mechanical properties of the ovary regulate folliculogenesis, integrating current knowledge on ovarian architecture, extracellular matrix composition, and mechanotransduction pathways. We highlight recent findings supporting mechanical regulation of folliculogenesis, discuss contradictory data, and describe the tools and models used to investigate this concept. By considering mechanical forces alongside hormonal and biochemical signals, we propose a more integrated view of the factors governing follicle development, with implications for understanding ovarian physiology and pathology.
期刊介绍:
Seminars in Cell and Developmental Biology is a review journal dedicated to keeping scientists informed of developments in the field of molecular cell and developmental biology, on a topic by topic basis. Each issue is thematic in approach, devoted to an important topic of interest to cell and developmental biologists, focusing on the latest advances and their specific implications.
The aim of each issue is to provide a coordinated, readable, and lively review of a selected area, published rapidly to ensure currency.