三次图中的诱导环顶点数和(1,2)-支配

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Rija Erveš , Aleksandra Tepeh
{"title":"三次图中的诱导环顶点数和(1,2)-支配","authors":"Rija Erveš ,&nbsp;Aleksandra Tepeh","doi":"10.1016/j.amc.2025.129700","DOIUrl":null,"url":null,"abstract":"<div><div>A (1,2)-dominating set in a graph <span><math><mi>G</mi></math></span> is a set <span><math><mi>S</mi></math></span> such that every vertex outside <span><math><mi>S</mi></math></span> has at least one neighbor in <span><math><mi>S</mi></math></span>, and each vertex in <span><math><mi>S</mi></math></span> has at least two neighbors in <span><math><mi>S</mi></math></span>. The (1,2)-domination number, <span><math><mrow><msub><mi>γ</mi><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum size of such a set, while <span><math><mrow><msub><mi>c</mi><mrow><mrow><mi>i</mi></mrow><mi>n</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the cardinality of the largest vertex set in <span><math><mi>G</mi></math></span> that induces one or more cycles. In this paper, we initiate the study of a relationship between these two concepts and discuss how establishing such a connection can contribute to solving a conjecture on the lower bound of <span><math><mrow><msub><mi>c</mi><mrow><mrow><mi>i</mi></mrow><mi>n</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for cubic graphs. We also establish an upper bound on <span><math><mrow><msub><mi>c</mi><mrow><mrow><mi>i</mi></mrow><mi>n</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for cubic graphs and characterize graphs that achieve this bound.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"510 ","pages":"Article 129700"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Induced cycles vertex number and (1,2)-domination in cubic graphs\",\"authors\":\"Rija Erveš ,&nbsp;Aleksandra Tepeh\",\"doi\":\"10.1016/j.amc.2025.129700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A (1,2)-dominating set in a graph <span><math><mi>G</mi></math></span> is a set <span><math><mi>S</mi></math></span> such that every vertex outside <span><math><mi>S</mi></math></span> has at least one neighbor in <span><math><mi>S</mi></math></span>, and each vertex in <span><math><mi>S</mi></math></span> has at least two neighbors in <span><math><mi>S</mi></math></span>. The (1,2)-domination number, <span><math><mrow><msub><mi>γ</mi><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum size of such a set, while <span><math><mrow><msub><mi>c</mi><mrow><mrow><mi>i</mi></mrow><mi>n</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the cardinality of the largest vertex set in <span><math><mi>G</mi></math></span> that induces one or more cycles. In this paper, we initiate the study of a relationship between these two concepts and discuss how establishing such a connection can contribute to solving a conjecture on the lower bound of <span><math><mrow><msub><mi>c</mi><mrow><mrow><mi>i</mi></mrow><mi>n</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for cubic graphs. We also establish an upper bound on <span><math><mrow><msub><mi>c</mi><mrow><mrow><mi>i</mi></mrow><mi>n</mi><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for cubic graphs and characterize graphs that achieve this bound.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"510 \",\"pages\":\"Article 129700\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325004266\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325004266","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图G中的(1,2)支配集是一个集S,使得S以外的每个顶点在S中至少有一个邻居,并且S中的每个顶点在S中至少有两个邻居。(1,2)支配数γ1,2(G)是这样一个集的最小大小,而cind(G)是G中诱导一个或多个循环的最大顶点集的基数。在本文中,我们开始研究这两个概念之间的关系,并讨论如何建立这样的联系有助于解决关于三次图的cind(G)下界的一个猜想。我们还建立了三次图的cind(G)的上界,并刻画了达到这个上界的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Induced cycles vertex number and (1,2)-domination in cubic graphs
A (1,2)-dominating set in a graph G is a set S such that every vertex outside S has at least one neighbor in S, and each vertex in S has at least two neighbors in S. The (1,2)-domination number, γ1,2(G), is the minimum size of such a set, while cind(G) is the cardinality of the largest vertex set in G that induces one or more cycles. In this paper, we initiate the study of a relationship between these two concepts and discuss how establishing such a connection can contribute to solving a conjecture on the lower bound of cind(G) for cubic graphs. We also establish an upper bound on cind(G) for cubic graphs and characterize graphs that achieve this bound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信