一个全流水线、低开销、高能效的基于cnn的移动视觉SLAM特征提取加速器

IF 1.9 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Bingqiang Liu , Zehua Yin , Ziang Duan , Jian Xiao , Yulong Tan , Jipeng Wang , Zixuan Shen , Zhigang Wu , Chao Wang
{"title":"一个全流水线、低开销、高能效的基于cnn的移动视觉SLAM特征提取加速器","authors":"Bingqiang Liu ,&nbsp;Zehua Yin ,&nbsp;Ziang Duan ,&nbsp;Jian Xiao ,&nbsp;Yulong Tan ,&nbsp;Jipeng Wang ,&nbsp;Zixuan Shen ,&nbsp;Zhigang Wu ,&nbsp;Chao Wang","doi":"10.1016/j.mejo.2025.106860","DOIUrl":null,"url":null,"abstract":"<div><div>Feature extraction is critical for Visual Simultaneous Localization And Mapping (VSLAM). The CNN-based SuperPoint outperforms traditional feature extractors but its high complexity hinders deployment on energy-constrained edge devices like small mobile robots. This paper proposes an energy-efficient SuperPoint hardware accelerator for VSLAM. The key contributions are: (1) developing a lightweight SuperPoint network by reducing filter numbers based on hierarchical feature characteristics, achieving an 88.3 % reduction in model size; (2) implementing a fully pipelined architecture to avoid general-purpose processing and deep learning IP, improving energy efficiency by eliminating off-chip access and sequential computation; (3) introducing a selective descriptor convolution strategy to skip redundant calculations on non-feature points, reducing descriptor computation and hardware overhead; and (4) proposing an optimized Non-Maximum Suppression strategy to remove duplicate comparisons within the sliding windows, further enhancing energy efficiency. FPGA evaluation shows 9.09 × lower hardware overhead and 58.2 mJ/frame energy efficiency, 22.2 % better than state-of-the-art, processing 480 × 640 images at 20 fps under 200 MHz.</div></div>","PeriodicalId":49818,"journal":{"name":"Microelectronics Journal","volume":"165 ","pages":"Article 106860"},"PeriodicalIF":1.9000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fully pipelined, low-overhead, and energy-efficient CNN-based feature extraction accelerator for mobile visual SLAM\",\"authors\":\"Bingqiang Liu ,&nbsp;Zehua Yin ,&nbsp;Ziang Duan ,&nbsp;Jian Xiao ,&nbsp;Yulong Tan ,&nbsp;Jipeng Wang ,&nbsp;Zixuan Shen ,&nbsp;Zhigang Wu ,&nbsp;Chao Wang\",\"doi\":\"10.1016/j.mejo.2025.106860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Feature extraction is critical for Visual Simultaneous Localization And Mapping (VSLAM). The CNN-based SuperPoint outperforms traditional feature extractors but its high complexity hinders deployment on energy-constrained edge devices like small mobile robots. This paper proposes an energy-efficient SuperPoint hardware accelerator for VSLAM. The key contributions are: (1) developing a lightweight SuperPoint network by reducing filter numbers based on hierarchical feature characteristics, achieving an 88.3 % reduction in model size; (2) implementing a fully pipelined architecture to avoid general-purpose processing and deep learning IP, improving energy efficiency by eliminating off-chip access and sequential computation; (3) introducing a selective descriptor convolution strategy to skip redundant calculations on non-feature points, reducing descriptor computation and hardware overhead; and (4) proposing an optimized Non-Maximum Suppression strategy to remove duplicate comparisons within the sliding windows, further enhancing energy efficiency. FPGA evaluation shows 9.09 × lower hardware overhead and 58.2 mJ/frame energy efficiency, 22.2 % better than state-of-the-art, processing 480 × 640 images at 20 fps under 200 MHz.</div></div>\",\"PeriodicalId\":49818,\"journal\":{\"name\":\"Microelectronics Journal\",\"volume\":\"165 \",\"pages\":\"Article 106860\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879239125003091\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879239125003091","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

特征提取是视觉同步定位与映射(VSLAM)的关键。基于cnn的SuperPoint优于传统的特征提取器,但其高复杂性阻碍了在小型移动机器人等能量受限的边缘设备上的部署。提出了一种高效节能的VSLAM硬件加速器SuperPoint。主要贡献有:(1)通过减少基于分层特征特征的滤波器数量,开发轻量级SuperPoint网络,实现了模型尺寸减少88.3%;(2)实现全流水线架构,避免通用处理和深度学习IP,通过消除片外访问和顺序计算提高能源效率;(3)引入选择性描述子卷积策略,跳过对非特征点的冗余计算,减少描述子计算量和硬件开销;(4)提出了一种优化的非最大抑制策略,以消除滑动窗口内的重复比较,进一步提高能源效率。FPGA评估显示,在200 MHz下,以20 fps的速度处理480 × 640图像,硬件开销降低了9.09倍,能效提高了58.2 mJ/帧,比目前的技术水平提高了22.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fully pipelined, low-overhead, and energy-efficient CNN-based feature extraction accelerator for mobile visual SLAM
Feature extraction is critical for Visual Simultaneous Localization And Mapping (VSLAM). The CNN-based SuperPoint outperforms traditional feature extractors but its high complexity hinders deployment on energy-constrained edge devices like small mobile robots. This paper proposes an energy-efficient SuperPoint hardware accelerator for VSLAM. The key contributions are: (1) developing a lightweight SuperPoint network by reducing filter numbers based on hierarchical feature characteristics, achieving an 88.3 % reduction in model size; (2) implementing a fully pipelined architecture to avoid general-purpose processing and deep learning IP, improving energy efficiency by eliminating off-chip access and sequential computation; (3) introducing a selective descriptor convolution strategy to skip redundant calculations on non-feature points, reducing descriptor computation and hardware overhead; and (4) proposing an optimized Non-Maximum Suppression strategy to remove duplicate comparisons within the sliding windows, further enhancing energy efficiency. FPGA evaluation shows 9.09 × lower hardware overhead and 58.2 mJ/frame energy efficiency, 22.2 % better than state-of-the-art, processing 480 × 640 images at 20 fps under 200 MHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics Journal
Microelectronics Journal 工程技术-工程:电子与电气
CiteScore
4.00
自引率
27.30%
发文量
222
审稿时长
43 days
期刊介绍: Published since 1969, the Microelectronics Journal is an international forum for the dissemination of research and applications of microelectronic systems, circuits, and emerging technologies. Papers published in the Microelectronics Journal have undergone peer review to ensure originality, relevance, and timeliness. The journal thus provides a worldwide, regular, and comprehensive update on microelectronic circuits and systems. The Microelectronics Journal invites papers describing significant research and applications in all of the areas listed below. Comprehensive review/survey papers covering recent developments will also be considered. The Microelectronics Journal covers circuits and systems. This topic includes but is not limited to: Analog, digital, mixed, and RF circuits and related design methodologies; Logic, architectural, and system level synthesis; Testing, design for testability, built-in self-test; Area, power, and thermal analysis and design; Mixed-domain simulation and design; Embedded systems; Non-von Neumann computing and related technologies and circuits; Design and test of high complexity systems integration; SoC, NoC, SIP, and NIP design and test; 3-D integration design and analysis; Emerging device technologies and circuits, such as FinFETs, SETs, spintronics, SFQ, MTJ, etc. Application aspects such as signal and image processing including circuits for cryptography, sensors, and actuators including sensor networks, reliability and quality issues, and economic models are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信