隐式中立型ABC导数分数阶微分方程的存在性及稳定性分析研究

Q1 Mathematics
V. Sowbakiya , R. Nirmalkumar , K. Loganathan , C. Selvamani
{"title":"隐式中立型ABC导数分数阶微分方程的存在性及稳定性分析研究","authors":"V. Sowbakiya ,&nbsp;R. Nirmalkumar ,&nbsp;K. Loganathan ,&nbsp;C. Selvamani","doi":"10.1016/j.padiff.2025.101276","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the existence, uniqueness, and stability analysis of non-linear implicit neutral fractional differential equations involving the Atangana–Baleanu derivative in the Caputo sense. The Banach contraction principle theorem is employed to establish the existence and uniqueness of solutions, while Krasnoselskii’s fixed-point theorem is utilized to further analyze the existence of solutions. Stability analysis is also examined, including results for Ulam–Hyers, generalized Ulam–Hyers, Ulam–Hyers–Rassias, and generalized Ulam–Hyers–Rassias stability. Finally, an example is presented to illustrate the existence and uniqueness of solutions, along with a discussion on their stability.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101276"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on existence and stability analysis for implicit neutral fractional differential equations of ABC derivative\",\"authors\":\"V. Sowbakiya ,&nbsp;R. Nirmalkumar ,&nbsp;K. Loganathan ,&nbsp;C. Selvamani\",\"doi\":\"10.1016/j.padiff.2025.101276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the existence, uniqueness, and stability analysis of non-linear implicit neutral fractional differential equations involving the Atangana–Baleanu derivative in the Caputo sense. The Banach contraction principle theorem is employed to establish the existence and uniqueness of solutions, while Krasnoselskii’s fixed-point theorem is utilized to further analyze the existence of solutions. Stability analysis is also examined, including results for Ulam–Hyers, generalized Ulam–Hyers, Ulam–Hyers–Rassias, and generalized Ulam–Hyers–Rassias stability. Finally, an example is presented to illustrate the existence and uniqueness of solutions, along with a discussion on their stability.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"15 \",\"pages\":\"Article 101276\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125002037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125002037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Caputo意义下涉及Atangana-Baleanu导数的非线性隐式中立型分数阶微分方程的存在唯一性和稳定性分析。利用Banach收缩原理定理建立解的存在唯一性,利用Krasnoselskii不动点定理进一步分析解的存在性。稳定性分析也进行了检查,包括Ulam-Hyers,广义Ulam-Hyers, Ulam-Hyers - rassias和广义Ulam-Hyers - rassias稳定性的结果。最后给出了一个例子来说明解的存在唯一性,并讨论了解的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on existence and stability analysis for implicit neutral fractional differential equations of ABC derivative
In this paper, we study the existence, uniqueness, and stability analysis of non-linear implicit neutral fractional differential equations involving the Atangana–Baleanu derivative in the Caputo sense. The Banach contraction principle theorem is employed to establish the existence and uniqueness of solutions, while Krasnoselskii’s fixed-point theorem is utilized to further analyze the existence of solutions. Stability analysis is also examined, including results for Ulam–Hyers, generalized Ulam–Hyers, Ulam–Hyers–Rassias, and generalized Ulam–Hyers–Rassias stability. Finally, an example is presented to illustrate the existence and uniqueness of solutions, along with a discussion on their stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信