高性能PVDF-HFP/ZnO/SrFe12O19纳米发电机具有增强的介电、铁电和磁电耦合,可为低功耗电子设备供电

IF 3.1 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sobi K. Chacko , Raneesh Balakrishnan , B.S. Athira , Achu Chandran
{"title":"高性能PVDF-HFP/ZnO/SrFe12O19纳米发电机具有增强的介电、铁电和磁电耦合,可为低功耗电子设备供电","authors":"Sobi K. Chacko ,&nbsp;Raneesh Balakrishnan ,&nbsp;B.S. Athira ,&nbsp;Achu Chandran","doi":"10.1016/j.cap.2025.08.010","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid expansion of wearable and portable electronics necessitates the development of sustainable, self-powered energy solutions. Herein, we report a high-performance, lead-free piezoelectric nanogenerator (PENG) based on electrospun fiber mats of a ternary composite comprising poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) embedded with ZnO and SrFe<sub>12</sub>O<sub>19</sub> (SFO) nanoparticles. The synergistic interaction between the electroactive polymer matrix and multifunctional fillers significantly enhanced the β-phase content, resulting in superior dielectric and ferroelectric behaviour. Furthermore, the incorporation of magnetic SFO nanoparticles induced magnetoelectric coupling, with the optimised composite exhibiting a magnetoelectric coupling coefficient of 25 mV/cm·Oe. The resulting PENG delivered a fourfold enhancement in open-circuit voltage (20 V<sub>pp</sub>) compared to pristine PVDF-HFP (5 V<sub>pp</sub>), under low mechanical excitation. The device efficiently powered low-energy electronics and charged capacitors through simple biomechanical motions, highlighting its promise for next-generation energy harvesting in flexible and wearable electronics.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 26-36"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-performance PVDF-HFP/ZnO/SrFe12O19 nanogenerators with enhanced dielectric, ferroelectric, and magnetoelectric coupling for powering low-power electronics\",\"authors\":\"Sobi K. Chacko ,&nbsp;Raneesh Balakrishnan ,&nbsp;B.S. Athira ,&nbsp;Achu Chandran\",\"doi\":\"10.1016/j.cap.2025.08.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid expansion of wearable and portable electronics necessitates the development of sustainable, self-powered energy solutions. Herein, we report a high-performance, lead-free piezoelectric nanogenerator (PENG) based on electrospun fiber mats of a ternary composite comprising poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) embedded with ZnO and SrFe<sub>12</sub>O<sub>19</sub> (SFO) nanoparticles. The synergistic interaction between the electroactive polymer matrix and multifunctional fillers significantly enhanced the β-phase content, resulting in superior dielectric and ferroelectric behaviour. Furthermore, the incorporation of magnetic SFO nanoparticles induced magnetoelectric coupling, with the optimised composite exhibiting a magnetoelectric coupling coefficient of 25 mV/cm·Oe. The resulting PENG delivered a fourfold enhancement in open-circuit voltage (20 V<sub>pp</sub>) compared to pristine PVDF-HFP (5 V<sub>pp</sub>), under low mechanical excitation. The device efficiently powered low-energy electronics and charged capacitors through simple biomechanical motions, highlighting its promise for next-generation energy harvesting in flexible and wearable electronics.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"80 \",\"pages\":\"Pages 26-36\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173925001683\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925001683","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可穿戴和便携式电子产品的快速发展需要开发可持续的、自供电的能源解决方案。在此,我们报道了一种高性能的无铅压电纳米发电机(PENG),该发电机基于由聚偏氟乙烯-共六氟丙烯(PVDF-HFP)包埋ZnO和SrFe12O19 (SFO)纳米颗粒的三元复合材料静电纺纤维垫。电活性聚合物基体与多功能填料之间的协同作用显著提高了β相含量,从而获得了优异的介电和铁电性能。此外,磁性SFO纳米颗粒的加入诱导了磁电耦合,优化后的复合材料的磁电耦合系数为25 mV/cm·Oe。在低机械激励下,与原始PVDF-HFP (5 Vpp)相比,所得到的PENG的开路电压(20 Vpp)提高了四倍。该设备通过简单的生物力学运动有效地为低能量电子设备和充电电容器供电,突出了其在柔性和可穿戴电子设备中下一代能量收集的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-performance PVDF-HFP/ZnO/SrFe12O19 nanogenerators with enhanced dielectric, ferroelectric, and magnetoelectric coupling for powering low-power electronics

High-performance PVDF-HFP/ZnO/SrFe12O19 nanogenerators with enhanced dielectric, ferroelectric, and magnetoelectric coupling for powering low-power electronics
The rapid expansion of wearable and portable electronics necessitates the development of sustainable, self-powered energy solutions. Herein, we report a high-performance, lead-free piezoelectric nanogenerator (PENG) based on electrospun fiber mats of a ternary composite comprising poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) embedded with ZnO and SrFe12O19 (SFO) nanoparticles. The synergistic interaction between the electroactive polymer matrix and multifunctional fillers significantly enhanced the β-phase content, resulting in superior dielectric and ferroelectric behaviour. Furthermore, the incorporation of magnetic SFO nanoparticles induced magnetoelectric coupling, with the optimised composite exhibiting a magnetoelectric coupling coefficient of 25 mV/cm·Oe. The resulting PENG delivered a fourfold enhancement in open-circuit voltage (20 Vpp) compared to pristine PVDF-HFP (5 Vpp), under low mechanical excitation. The device efficiently powered low-energy electronics and charged capacitors through simple biomechanical motions, highlighting its promise for next-generation energy harvesting in flexible and wearable electronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信