基于多模态sar -光学数据融合的降雨诱发滑坡时空重建与失稳分析

IF 5.7 1区 农林科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Lele Zhang , Jie Dou , Zilin Xiang , Mengshuang Huang , Zhengyang Tang , Guangli Xu , Shiping Hou , Fei Yuan , Bo Peng , Xian Liu
{"title":"基于多模态sar -光学数据融合的降雨诱发滑坡时空重建与失稳分析","authors":"Lele Zhang ,&nbsp;Jie Dou ,&nbsp;Zilin Xiang ,&nbsp;Mengshuang Huang ,&nbsp;Zhengyang Tang ,&nbsp;Guangli Xu ,&nbsp;Shiping Hou ,&nbsp;Fei Yuan ,&nbsp;Bo Peng ,&nbsp;Xian Liu","doi":"10.1016/j.catena.2025.109399","DOIUrl":null,"url":null,"abstract":"<div><div>Monitoring rainfall-induced landslides remains challenging due to the limitations of single-source remote sensing in capturing full-cycle kinematic behaviors, from pre-failure creep to catastrophic collapse. To address this, this study proposes a temporally stratified, multi-modal framework that integrates Distributed Scatterer InSAR (DS-InSAR), dense optical flow (OF) analysis, and three-dimensional discrete element simulations. Applying this framework to the Shaziba landslide (China), DS-InSAR successfully captured early-stage creep signals even in vegetation-covered terrains. The pyramid-optimized OF algorithm achieved a 79% and 61% reduction in displacement Root Mean Square Error (RMSE) compared to traditional Co-registration of Optically Sensed Images and Correlation (COSI-Corr) methods in east–west and north–south directions, respectively, significantly improving rapid failure tracking. Physics-based simulations further reconstructed the dynamic failure process, identifying retrogressive sliding triggered by rainfall-driven crack infiltration into impermeable coal seams. This integrated approach not only reconstructs the full lifecycle of landslide evolution but also identifies post-failure hydro-mechanical feedbacks critical for early warning and targeted mitigation. The framework provides a transferable methodology for landslide monitoring and stability assessment in complex, data-scarce environments.</div></div>","PeriodicalId":9801,"journal":{"name":"Catena","volume":"259 ","pages":"Article 109399"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal reconstruction and post-failure stability analysis of rainfall-induced landslides via multi-modal SAR-optical data fusion\",\"authors\":\"Lele Zhang ,&nbsp;Jie Dou ,&nbsp;Zilin Xiang ,&nbsp;Mengshuang Huang ,&nbsp;Zhengyang Tang ,&nbsp;Guangli Xu ,&nbsp;Shiping Hou ,&nbsp;Fei Yuan ,&nbsp;Bo Peng ,&nbsp;Xian Liu\",\"doi\":\"10.1016/j.catena.2025.109399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Monitoring rainfall-induced landslides remains challenging due to the limitations of single-source remote sensing in capturing full-cycle kinematic behaviors, from pre-failure creep to catastrophic collapse. To address this, this study proposes a temporally stratified, multi-modal framework that integrates Distributed Scatterer InSAR (DS-InSAR), dense optical flow (OF) analysis, and three-dimensional discrete element simulations. Applying this framework to the Shaziba landslide (China), DS-InSAR successfully captured early-stage creep signals even in vegetation-covered terrains. The pyramid-optimized OF algorithm achieved a 79% and 61% reduction in displacement Root Mean Square Error (RMSE) compared to traditional Co-registration of Optically Sensed Images and Correlation (COSI-Corr) methods in east–west and north–south directions, respectively, significantly improving rapid failure tracking. Physics-based simulations further reconstructed the dynamic failure process, identifying retrogressive sliding triggered by rainfall-driven crack infiltration into impermeable coal seams. This integrated approach not only reconstructs the full lifecycle of landslide evolution but also identifies post-failure hydro-mechanical feedbacks critical for early warning and targeted mitigation. The framework provides a transferable methodology for landslide monitoring and stability assessment in complex, data-scarce environments.</div></div>\",\"PeriodicalId\":9801,\"journal\":{\"name\":\"Catena\",\"volume\":\"259 \",\"pages\":\"Article 109399\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catena\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0341816225007015\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catena","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0341816225007015","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于单源遥感在捕获从破坏前蠕变到灾难性崩塌的全周期运动学行为方面的局限性,监测降雨引起的滑坡仍然具有挑战性。为了解决这个问题,本研究提出了一个时间分层的多模态框架,该框架集成了分布式散射体InSAR (DS-InSAR)、密集光流(OF)分析和三维离散元素模拟。将这一框架应用于沙子坝滑坡(中国),DS-InSAR成功捕获了植被覆盖地区的早期蠕变信号。与传统的光学遥感图像共配准和相关(cos - corr)方法相比,经金字塔优化的OF算法在东西和南北方向上的位移均方根误差(RMSE)分别降低了79%和61%,显著提高了故障的快速跟踪能力。基于物理的模拟进一步重建了动态破坏过程,识别了由降雨驱动的裂隙渗入不透水煤层引发的倒退滑动。这种综合方法不仅重建了滑坡演化的整个生命周期,而且还确定了对早期预警和有针对性的减灾至关重要的破坏后水-力学反馈。该框架为复杂、数据稀缺环境下的滑坡监测和稳定性评估提供了一种可转移的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatiotemporal reconstruction and post-failure stability analysis of rainfall-induced landslides via multi-modal SAR-optical data fusion
Monitoring rainfall-induced landslides remains challenging due to the limitations of single-source remote sensing in capturing full-cycle kinematic behaviors, from pre-failure creep to catastrophic collapse. To address this, this study proposes a temporally stratified, multi-modal framework that integrates Distributed Scatterer InSAR (DS-InSAR), dense optical flow (OF) analysis, and three-dimensional discrete element simulations. Applying this framework to the Shaziba landslide (China), DS-InSAR successfully captured early-stage creep signals even in vegetation-covered terrains. The pyramid-optimized OF algorithm achieved a 79% and 61% reduction in displacement Root Mean Square Error (RMSE) compared to traditional Co-registration of Optically Sensed Images and Correlation (COSI-Corr) methods in east–west and north–south directions, respectively, significantly improving rapid failure tracking. Physics-based simulations further reconstructed the dynamic failure process, identifying retrogressive sliding triggered by rainfall-driven crack infiltration into impermeable coal seams. This integrated approach not only reconstructs the full lifecycle of landslide evolution but also identifies post-failure hydro-mechanical feedbacks critical for early warning and targeted mitigation. The framework provides a transferable methodology for landslide monitoring and stability assessment in complex, data-scarce environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catena
Catena 环境科学-地球科学综合
CiteScore
10.50
自引率
9.70%
发文量
816
审稿时长
54 days
期刊介绍: Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment. Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信