气体传感器向嗅觉显示发展的最新进展

IF 11 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ye-Ji Kim, Chae Young Woo, Yeonggwon Kim, Sung Min Kim, Na-Yeong Kim, Hyung Woo Lee, Jin-Woo Oh
{"title":"气体传感器向嗅觉显示发展的最新进展","authors":"Ye-Ji Kim,&nbsp;Chae Young Woo,&nbsp;Yeonggwon Kim,&nbsp;Sung Min Kim,&nbsp;Na-Yeong Kim,&nbsp;Hyung Woo Lee,&nbsp;Jin-Woo Oh","doi":"10.1186/s40580-025-00508-y","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Olfactory display systems, designed to replicate the human sense of smell, rely on gas sensors that are fast, selective, and reliable. From this perspective, this review highlights recent progress in sensing materials and integration strategies that enable room-temperature operation, rapid response and recovery, and closed-loop control for realistic odor delivery. Advances are classified into three categories: organic, inorganic, and hybrid systems. Organic materials, including conductive polymers and biomolecules, offer tunable selectivity and lightweight flexibility. Inorganic semiconductors, especially metal oxides, provide high sensitivity and durability, though they typically require elevated temperatures. Hybrid architectures, exemplified by M13 bacteriophage–carbon nanotube composites, merge these strengths to achieve superior performance under ambient conditions. Particular emphasis is placed on sensors for ethylene, hydrogen sulfide, hydrogen, acetone, and nitrogen dioxide—gases critical to food preservation, environmental monitoring, and healthcare. Finally, we discuss persistent challenges, such as selectivity under complex conditions, device miniaturization, and closed-loop integration, and propose strategic research directions toward immersive, real-time olfactory display technologies.</p>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"12 1","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00508-y","citationCount":"0","resultStr":"{\"title\":\"Recent progress of gas sensors toward olfactory display development\",\"authors\":\"Ye-Ji Kim,&nbsp;Chae Young Woo,&nbsp;Yeonggwon Kim,&nbsp;Sung Min Kim,&nbsp;Na-Yeong Kim,&nbsp;Hyung Woo Lee,&nbsp;Jin-Woo Oh\",\"doi\":\"10.1186/s40580-025-00508-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Olfactory display systems, designed to replicate the human sense of smell, rely on gas sensors that are fast, selective, and reliable. From this perspective, this review highlights recent progress in sensing materials and integration strategies that enable room-temperature operation, rapid response and recovery, and closed-loop control for realistic odor delivery. Advances are classified into three categories: organic, inorganic, and hybrid systems. Organic materials, including conductive polymers and biomolecules, offer tunable selectivity and lightweight flexibility. Inorganic semiconductors, especially metal oxides, provide high sensitivity and durability, though they typically require elevated temperatures. Hybrid architectures, exemplified by M13 bacteriophage–carbon nanotube composites, merge these strengths to achieve superior performance under ambient conditions. Particular emphasis is placed on sensors for ethylene, hydrogen sulfide, hydrogen, acetone, and nitrogen dioxide—gases critical to food preservation, environmental monitoring, and healthcare. Finally, we discuss persistent challenges, such as selectivity under complex conditions, device miniaturization, and closed-loop integration, and propose strategic research directions toward immersive, real-time olfactory display technologies.</p>\\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\\n </div>\",\"PeriodicalId\":712,\"journal\":{\"name\":\"Nano Convergence\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-025-00508-y\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Convergence\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40580-025-00508-y\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-025-00508-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

用于复制人类嗅觉的嗅觉显示系统依赖于快速、选择性和可靠的气体传感器。从这个角度来看,本文重点介绍了传感材料和集成策略的最新进展,这些材料和集成策略可以实现室温操作,快速响应和恢复,以及对真实气味传递的闭环控制。进展分为三类:有机、无机和混合系统。有机材料,包括导电聚合物和生物分子,提供可调的选择性和轻量级的灵活性。无机半导体,尤其是金属氧化物,提供了高灵敏度和耐用性,尽管它们通常需要高温。以M13噬菌体-碳纳米管复合材料为例的混合结构融合了这些优势,在环境条件下实现了卓越的性能。特别强调的是放在传感器的乙烯,硫化氢,氢,丙酮和二氧化氮气体至关重要的食品保存,环境监测和医疗保健。最后,我们讨论了复杂条件下的选择性、器件小型化和闭环集成等持续存在的挑战,并提出了沉浸式实时嗅觉显示技术的战略研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent progress of gas sensors toward olfactory display development

Olfactory display systems, designed to replicate the human sense of smell, rely on gas sensors that are fast, selective, and reliable. From this perspective, this review highlights recent progress in sensing materials and integration strategies that enable room-temperature operation, rapid response and recovery, and closed-loop control for realistic odor delivery. Advances are classified into three categories: organic, inorganic, and hybrid systems. Organic materials, including conductive polymers and biomolecules, offer tunable selectivity and lightweight flexibility. Inorganic semiconductors, especially metal oxides, provide high sensitivity and durability, though they typically require elevated temperatures. Hybrid architectures, exemplified by M13 bacteriophage–carbon nanotube composites, merge these strengths to achieve superior performance under ambient conditions. Particular emphasis is placed on sensors for ethylene, hydrogen sulfide, hydrogen, acetone, and nitrogen dioxide—gases critical to food preservation, environmental monitoring, and healthcare. Finally, we discuss persistent challenges, such as selectivity under complex conditions, device miniaturization, and closed-loop integration, and propose strategic research directions toward immersive, real-time olfactory display technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Convergence
Nano Convergence Engineering-General Engineering
CiteScore
15.90
自引率
2.60%
发文量
50
审稿时长
13 weeks
期刊介绍: Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects. Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信