Ali Siddique, Muhammad Azhar Iqbal, Jingqi Sun, Xu Zhang, Mang I. Vai, Sunbal Siddique
{"title":"N-AquaRAM:一种经济高效的深度学习加速器,用于实时水培监测","authors":"Ali Siddique, Muhammad Azhar Iqbal, Jingqi Sun, Xu Zhang, Mang I. Vai, Sunbal Siddique","doi":"10.1007/s40003-024-00788-6","DOIUrl":null,"url":null,"abstract":"<div><p>Aquaponics is an emerging area of agricultural sciences that combines aquaculture and hydroponics in a symbiotic way to increase crop production. Though it offers a lot of advantages over traditional techniques, including chemical-free and soil-less farming, its commercial application suffers from some problems such as the lack of experienced manpower. To operate a stable smart aquaponic system, it is critical to estimate the fish size properly. In this context, the use of dedicated hardware for real-time aquaponic monitoring can greatly resolve the issue of inexperienced handlers. In this article, we present a complete methodology to train a deep neural network to perform fish size estimation in real time. To achieve high accuracy, a novel implementation of swish function is presented. This novel version is far more hardware efficient than the original one, while being extremely accurate. Moreover, we present a deep learning accelerator that can classify 40 million fish samples in a second. The dedicated real-time system is about 1600 times faster than the one based on general-purpose computers. The proposed neuromorphic accelerator consumes about 2600 slice registers on a low-end model of Virtex 6 FPGA series.</p></div>","PeriodicalId":7553,"journal":{"name":"Agricultural Research","volume":"14 3","pages":"591 - 604"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40003-024-00788-6.pdf","citationCount":"0","resultStr":"{\"title\":\"N-AquaRAM: A Cost-Efficient Deep Learning Accelerator for Real-Time Aquaponic Monitoring\",\"authors\":\"Ali Siddique, Muhammad Azhar Iqbal, Jingqi Sun, Xu Zhang, Mang I. Vai, Sunbal Siddique\",\"doi\":\"10.1007/s40003-024-00788-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aquaponics is an emerging area of agricultural sciences that combines aquaculture and hydroponics in a symbiotic way to increase crop production. Though it offers a lot of advantages over traditional techniques, including chemical-free and soil-less farming, its commercial application suffers from some problems such as the lack of experienced manpower. To operate a stable smart aquaponic system, it is critical to estimate the fish size properly. In this context, the use of dedicated hardware for real-time aquaponic monitoring can greatly resolve the issue of inexperienced handlers. In this article, we present a complete methodology to train a deep neural network to perform fish size estimation in real time. To achieve high accuracy, a novel implementation of swish function is presented. This novel version is far more hardware efficient than the original one, while being extremely accurate. Moreover, we present a deep learning accelerator that can classify 40 million fish samples in a second. The dedicated real-time system is about 1600 times faster than the one based on general-purpose computers. The proposed neuromorphic accelerator consumes about 2600 slice registers on a low-end model of Virtex 6 FPGA series.</p></div>\",\"PeriodicalId\":7553,\"journal\":{\"name\":\"Agricultural Research\",\"volume\":\"14 3\",\"pages\":\"591 - 604\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40003-024-00788-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40003-024-00788-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40003-024-00788-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
N-AquaRAM: A Cost-Efficient Deep Learning Accelerator for Real-Time Aquaponic Monitoring
Aquaponics is an emerging area of agricultural sciences that combines aquaculture and hydroponics in a symbiotic way to increase crop production. Though it offers a lot of advantages over traditional techniques, including chemical-free and soil-less farming, its commercial application suffers from some problems such as the lack of experienced manpower. To operate a stable smart aquaponic system, it is critical to estimate the fish size properly. In this context, the use of dedicated hardware for real-time aquaponic monitoring can greatly resolve the issue of inexperienced handlers. In this article, we present a complete methodology to train a deep neural network to perform fish size estimation in real time. To achieve high accuracy, a novel implementation of swish function is presented. This novel version is far more hardware efficient than the original one, while being extremely accurate. Moreover, we present a deep learning accelerator that can classify 40 million fish samples in a second. The dedicated real-time system is about 1600 times faster than the one based on general-purpose computers. The proposed neuromorphic accelerator consumes about 2600 slice registers on a low-end model of Virtex 6 FPGA series.
期刊介绍:
The main objective of this initiative is to promote agricultural research and development. The journal will publish high quality original research papers and critical reviews on emerging fields and concepts for providing future directions. The publications will include both applied and basic research covering the following disciplines of agricultural sciences: Genetic resources, genetics and breeding, biotechnology, physiology, biochemistry, management of biotic and abiotic stresses, and nutrition of field crops, horticultural crops, livestock and fishes; agricultural meteorology, environmental sciences, forestry and agro forestry, agronomy, soils and soil management, microbiology, water management, agricultural engineering and technology, agricultural policy, agricultural economics, food nutrition, agricultural statistics, and extension research; impact of climate change and the emerging technologies on agriculture, and the role of agricultural research and innovation for development.