基于Wi-Fi RTT和机器学习的室内无人机定位方法

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuichiro Sugiyama;Kentaro Kobayashi
{"title":"基于Wi-Fi RTT和机器学习的室内无人机定位方法","authors":"Yuichiro Sugiyama;Kentaro Kobayashi","doi":"10.23919/comex.2025XBL0087","DOIUrl":null,"url":null,"abstract":"For drones to expand their activities, a self-localization method for indoor flying drones is required to complement GPS. We have investigated indoor drone positioning based on Wi-Fi RTT (Round Trip Time). This paper presents methods for estimating the position coordinate of a drone using Wi-Fi RTT and machine learning. In addition to a method that learns actual Wi-Fi RTT ranging data, we propose a novel method that learns pseudo-generated ranging data reproducing Wi-Fi RTT characteristics. Experimental results show that the proposed machine learning-based method using pseudo-generated data achieves higher accuracy than the method that learns actual ranging data and is also superior to the conventional MMSE method.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"14 9","pages":"342-345"},"PeriodicalIF":0.3000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11078825","citationCount":"0","resultStr":"{\"title\":\"Indoor Drone Positioning Methods Using Wi-Fi RTT and Machine Learning\",\"authors\":\"Yuichiro Sugiyama;Kentaro Kobayashi\",\"doi\":\"10.23919/comex.2025XBL0087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For drones to expand their activities, a self-localization method for indoor flying drones is required to complement GPS. We have investigated indoor drone positioning based on Wi-Fi RTT (Round Trip Time). This paper presents methods for estimating the position coordinate of a drone using Wi-Fi RTT and machine learning. In addition to a method that learns actual Wi-Fi RTT ranging data, we propose a novel method that learns pseudo-generated ranging data reproducing Wi-Fi RTT characteristics. Experimental results show that the proposed machine learning-based method using pseudo-generated data achieves higher accuracy than the method that learns actual ranging data and is also superior to the conventional MMSE method.\",\"PeriodicalId\":54101,\"journal\":{\"name\":\"IEICE Communications Express\",\"volume\":\"14 9\",\"pages\":\"342-345\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11078825\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Communications Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11078825/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11078825/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为了扩大无人机的活动范围,需要一种室内无人机的自定位方法来补充GPS。我们研究了基于Wi-Fi RTT(往返时间)的室内无人机定位。本文提出了利用Wi-Fi RTT和机器学习估计无人机位置坐标的方法。除了学习实际Wi-Fi RTT测距数据的方法外,我们还提出了一种学习再现Wi-Fi RTT特征的伪生成测距数据的新方法。实验结果表明,基于伪生成数据的机器学习方法比实际测距数据学习方法具有更高的精度,也优于传统的MMSE方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indoor Drone Positioning Methods Using Wi-Fi RTT and Machine Learning
For drones to expand their activities, a self-localization method for indoor flying drones is required to complement GPS. We have investigated indoor drone positioning based on Wi-Fi RTT (Round Trip Time). This paper presents methods for estimating the position coordinate of a drone using Wi-Fi RTT and machine learning. In addition to a method that learns actual Wi-Fi RTT ranging data, we propose a novel method that learns pseudo-generated ranging data reproducing Wi-Fi RTT characteristics. Experimental results show that the proposed machine learning-based method using pseudo-generated data achieves higher accuracy than the method that learns actual ranging data and is also superior to the conventional MMSE method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信