基于时滞四稳定随机共振模型的弱轴承故障诊断

IF 4.6 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Zhuo Wang  (, ), Yanfei Jin  (, ), Yonghui An  (, ), Haotian Wang  (, ), Qiang Tian  (, )
{"title":"基于时滞四稳定随机共振模型的弱轴承故障诊断","authors":"Zhuo Wang \n (,&nbsp;),&nbsp;Yanfei Jin \n (,&nbsp;),&nbsp;Yonghui An \n (,&nbsp;),&nbsp;Haotian Wang \n (,&nbsp;),&nbsp;Qiang Tian \n (,&nbsp;)","doi":"10.1007/s10409-025-24754-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a time-delayed quad-stable stochastic resonance (SR) model driven by Gaussian white correlated noises and a weak periodic signal. For the small time delay, the mean first-passage times and spectral amplification (SA) are derived. The curve of SA exhibits a typical resonant peak at an optimal noise intensity and SR happens. Moreover, as the time delay increases, the peak value of SA is enhanced for a fixed feedback gain. It is found that selecting appropriate cross-correlation between noises and feedback gain for fixed time delay can induce the appearance of SR. In particular, an ideal quad-stable potential structure is determined to optimize the SR effect. Subsequently, an adaptive improved quad-stable SR model based on quantum particle swarm optimization is proposed to determine the optimal structure parameters to maximize improved signal-to-noise ratio. Meanwhile, the proposed model is applied to diagnose weak bearing faults in inner race, outer race, and rolling elements. The results indicate that the time-delayed quad-stable SR model significantly enhances the fault diagnosis performance and resolves the issues related to side frequency interference compared to the underdamped bi-stable SR model and the underdamped quad-stable SR model. In the fault diagnosis of bearing rolling elements, the proposed SR model can accurately identify fault frequency values. While the underdamped bi-stable and quad-stable SR models are invalid for this case.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"42 5","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak bearing fault diagnosis based on a time-delayed quad-stable stochastic resonance model\",\"authors\":\"Zhuo Wang \\n (,&nbsp;),&nbsp;Yanfei Jin \\n (,&nbsp;),&nbsp;Yonghui An \\n (,&nbsp;),&nbsp;Haotian Wang \\n (,&nbsp;),&nbsp;Qiang Tian \\n (,&nbsp;)\",\"doi\":\"10.1007/s10409-025-24754-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a time-delayed quad-stable stochastic resonance (SR) model driven by Gaussian white correlated noises and a weak periodic signal. For the small time delay, the mean first-passage times and spectral amplification (SA) are derived. The curve of SA exhibits a typical resonant peak at an optimal noise intensity and SR happens. Moreover, as the time delay increases, the peak value of SA is enhanced for a fixed feedback gain. It is found that selecting appropriate cross-correlation between noises and feedback gain for fixed time delay can induce the appearance of SR. In particular, an ideal quad-stable potential structure is determined to optimize the SR effect. Subsequently, an adaptive improved quad-stable SR model based on quantum particle swarm optimization is proposed to determine the optimal structure parameters to maximize improved signal-to-noise ratio. Meanwhile, the proposed model is applied to diagnose weak bearing faults in inner race, outer race, and rolling elements. The results indicate that the time-delayed quad-stable SR model significantly enhances the fault diagnosis performance and resolves the issues related to side frequency interference compared to the underdamped bi-stable SR model and the underdamped quad-stable SR model. In the fault diagnosis of bearing rolling elements, the proposed SR model can accurately identify fault frequency values. While the underdamped bi-stable and quad-stable SR models are invalid for this case.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":\"42 5\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-025-24754-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-025-24754-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种由高斯白相关噪声和弱周期信号驱动的延时四稳定随机共振(SR)模型。对于较小的时延,导出了平均首次通过时间和频谱放大(SA)。在最佳噪声强度下,SA曲线呈现出典型的共振峰,并发生SR。此外,随着时间延迟的增加,对于固定的反馈增益,SA的峰值增强。研究发现,在固定的时滞条件下,选择适当的噪声与反馈增益之间的相互关系,可以诱导SR的出现,特别是确定了理想的四稳定电位结构来优化SR效果。随后,提出了一种基于量子粒子群优化的自适应改进四稳定SR模型,以确定最优结构参数,使改进的信噪比最大化。同时,将该模型应用于轴承内圈、外圈和滚动体的弱故障诊断。结果表明,与欠阻尼双稳定SR模型和欠阻尼四稳定SR模型相比,时滞四稳定SR模型显著提高了故障诊断性能,解决了侧频干扰问题。在轴承滚动件故障诊断中,所提出的SR模型能准确识别故障频率值。而欠阻尼双稳态和四稳态SR模型在这种情况下是无效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak bearing fault diagnosis based on a time-delayed quad-stable stochastic resonance model

This paper proposes a time-delayed quad-stable stochastic resonance (SR) model driven by Gaussian white correlated noises and a weak periodic signal. For the small time delay, the mean first-passage times and spectral amplification (SA) are derived. The curve of SA exhibits a typical resonant peak at an optimal noise intensity and SR happens. Moreover, as the time delay increases, the peak value of SA is enhanced for a fixed feedback gain. It is found that selecting appropriate cross-correlation between noises and feedback gain for fixed time delay can induce the appearance of SR. In particular, an ideal quad-stable potential structure is determined to optimize the SR effect. Subsequently, an adaptive improved quad-stable SR model based on quantum particle swarm optimization is proposed to determine the optimal structure parameters to maximize improved signal-to-noise ratio. Meanwhile, the proposed model is applied to diagnose weak bearing faults in inner race, outer race, and rolling elements. The results indicate that the time-delayed quad-stable SR model significantly enhances the fault diagnosis performance and resolves the issues related to side frequency interference compared to the underdamped bi-stable SR model and the underdamped quad-stable SR model. In the fault diagnosis of bearing rolling elements, the proposed SR model can accurately identify fault frequency values. While the underdamped bi-stable and quad-stable SR models are invalid for this case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Sinica
Acta Mechanica Sinica 物理-工程:机械
CiteScore
5.60
自引率
20.00%
发文量
1807
审稿时长
4 months
期刊介绍: Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences. Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences. In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest. Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信