{"title":"具有有效化学势的多组分聚合物体系相平衡的统一方法","authors":"Wei-Ling Huang, Yu-Chen Zhang, Yi-Xin Liu","doi":"10.1007/s10118-025-3369-8","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-component polymer systems exhibit exceptional versatility and structural diversity, making them indispensable in the polymer industry as well as in advanced and high performance applications. However, constructing accurate phase diagrams for these systems remains challenging due to inhomogeneous structures arising from the introduction of block copolymer components. Here, we present a unified and model-agnostic framework for computing phase equilibria in multi-component polymeric systems based on the concept of “effective chemical potential”. This approach directly connects key thermodynamic variables in the canonical ensemble to other ensembles, unifying phase coexistence determination without requiring the reformulation of self-consistent field theory (SCFT) calculations across different ensembles. By decoupling phase equilibrium determination from specific ensemble formulations, our approach enables the reuse of existing SCFT solvers. Moreover, it provides a useful framework to develop highly efficient phase equilibrium solvers for multi-component polymer systems.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 9","pages":"1681 - 1689"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Unified Approach to Phase Equilibria in Multi-component Polymer Systems with Effective Chemical Potential\",\"authors\":\"Wei-Ling Huang, Yu-Chen Zhang, Yi-Xin Liu\",\"doi\":\"10.1007/s10118-025-3369-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-component polymer systems exhibit exceptional versatility and structural diversity, making them indispensable in the polymer industry as well as in advanced and high performance applications. However, constructing accurate phase diagrams for these systems remains challenging due to inhomogeneous structures arising from the introduction of block copolymer components. Here, we present a unified and model-agnostic framework for computing phase equilibria in multi-component polymeric systems based on the concept of “effective chemical potential”. This approach directly connects key thermodynamic variables in the canonical ensemble to other ensembles, unifying phase coexistence determination without requiring the reformulation of self-consistent field theory (SCFT) calculations across different ensembles. By decoupling phase equilibrium determination from specific ensemble formulations, our approach enables the reuse of existing SCFT solvers. Moreover, it provides a useful framework to develop highly efficient phase equilibrium solvers for multi-component polymer systems.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"43 9\",\"pages\":\"1681 - 1689\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-025-3369-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-025-3369-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
A Unified Approach to Phase Equilibria in Multi-component Polymer Systems with Effective Chemical Potential
Multi-component polymer systems exhibit exceptional versatility and structural diversity, making them indispensable in the polymer industry as well as in advanced and high performance applications. However, constructing accurate phase diagrams for these systems remains challenging due to inhomogeneous structures arising from the introduction of block copolymer components. Here, we present a unified and model-agnostic framework for computing phase equilibria in multi-component polymeric systems based on the concept of “effective chemical potential”. This approach directly connects key thermodynamic variables in the canonical ensemble to other ensembles, unifying phase coexistence determination without requiring the reformulation of self-consistent field theory (SCFT) calculations across different ensembles. By decoupling phase equilibrium determination from specific ensemble formulations, our approach enables the reuse of existing SCFT solvers. Moreover, it provides a useful framework to develop highly efficient phase equilibrium solvers for multi-component polymer systems.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.