利用神经网络和编辑距离预测非线性时间序列的局部极大值

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Zhuocheng Liu , Yoshito Hirata
{"title":"利用神经网络和编辑距离预测非线性时间序列的局部极大值","authors":"Zhuocheng Liu ,&nbsp;Yoshito Hirata","doi":"10.1016/j.physa.2025.130935","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we introduce an edit distance for event series into the prediction network, which considers both time and value of the events like local maxima. We use the time series data generated from the Rössler system to conduct a prediction experiment. We compared the prediction results of inputting 0,1,2, and 3 edit distances into the neural network. We found that the root mean square error of prediction decreases while the input number of the edit distances increases from 0 to 3. We discuss how the edit distance contributes to improving the prediction accuracy because the edit distances effectively describe the relationships between maxima states from different time.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"677 ","pages":"Article 130935"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting local maxima of nonlinear time series with a neural network and edit distance\",\"authors\":\"Zhuocheng Liu ,&nbsp;Yoshito Hirata\",\"doi\":\"10.1016/j.physa.2025.130935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we introduce an edit distance for event series into the prediction network, which considers both time and value of the events like local maxima. We use the time series data generated from the Rössler system to conduct a prediction experiment. We compared the prediction results of inputting 0,1,2, and 3 edit distances into the neural network. We found that the root mean square error of prediction decreases while the input number of the edit distances increases from 0 to 3. We discuss how the edit distance contributes to improving the prediction accuracy because the edit distances effectively describe the relationships between maxima states from different time.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"677 \",\"pages\":\"Article 130935\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437125005874\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125005874","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将事件序列的编辑距离引入到预测网络中,它像局部最大值一样考虑事件的时间和值。我们使用Rössler系统生成的时间序列数据进行预测实验。我们比较了输入0、1、2、3个编辑距离到神经网络的预测结果。我们发现,当编辑距离的输入个数从0增加到3时,预测的均方根误差减小。我们讨论了编辑距离如何有助于提高预测精度,因为编辑距离有效地描述了不同时间的最大状态之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting local maxima of nonlinear time series with a neural network and edit distance
In this article, we introduce an edit distance for event series into the prediction network, which considers both time and value of the events like local maxima. We use the time series data generated from the Rössler system to conduct a prediction experiment. We compared the prediction results of inputting 0,1,2, and 3 edit distances into the neural network. We found that the root mean square error of prediction decreases while the input number of the edit distances increases from 0 to 3. We discuss how the edit distance contributes to improving the prediction accuracy because the edit distances effectively describe the relationships between maxima states from different time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信