随机虚拟患者引导的机械通气治疗:考虑机械功率的虚拟患者研究

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Christopher Yew Shuen Ang , Yeong Shiong Chiew , Xin Wang , Ean Hin Ooi , Mohd Basri Mat Nor , Matthew E. Cove , Cong Zhou , J. Geoffrey Chase
{"title":"随机虚拟患者引导的机械通气治疗:考虑机械功率的虚拟患者研究","authors":"Christopher Yew Shuen Ang ,&nbsp;Yeong Shiong Chiew ,&nbsp;Xin Wang ,&nbsp;Ean Hin Ooi ,&nbsp;Mohd Basri Mat Nor ,&nbsp;Matthew E. Cove ,&nbsp;Cong Zhou ,&nbsp;J. Geoffrey Chase","doi":"10.1016/j.ifacsc.2025.100334","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective</h3><div>: Computerised decision support systems (CDSS) in mechanical ventilation (MV) provide individualised, closed-loop treatment but often require extensive input parameters, which are challenging to obtain continuously in clinical settings. Many also fail to incorporate mechanical power (<em>MP</em>) and <em>MP ratio</em> — recently identified as significant predictors of patient outcomes. This study introduces the Stochastic Virtual Patient Ventilation Protocol (SVP VENT), a model-based CDSS addressing these limitations.</div></div><div><h3>Methods</h3><div>: The SVP VENT Protocol integrates a stochastic virtual patient model to predict temporal lung elastance, <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow></msub></math></span>, trends and deliver closed-loop, lung protective ventilation minimising <em>MP ratio</em> and driving pressure. The protocol was validated against the VENT and SiVENT protocols using an established virtual patient platform comprising over 1229 h of both volume control (VC) and pressure control (PC) retrospective MV data. Patient responses were monitored to ensure adherence to accepted clinical safety guidelines.</div></div><div><h3>Results</h3><div>: The SVP VENT protocol consistently outperformed retrospective clinical data, VENT and SiVENT protocols in ensuring adherence to clinical safety metrics, achieving an all-adherence rate of <span><math><mo>∼</mo></math></span>57% and <span><math><mo>∼</mo></math></span>67% for the VC and PC cohorts, respectively. Across cohorts, the protocol maintained <em>MP</em> and <em>MP ratio</em> levels below safety thresholds (12 J/min and 4.5, respectively), and extended intervention intervals up to 3 h, potentially reducing clinical workload.</div></div><div><h3>Conclusion</h3><div>: Overall, the virtual trial demonstrates the SVP VENT protocol’s potential to enhance MV management by extending intervention intervals, while maintaining patient safety. These findings support initial clinical trials to evaluate the protocol’s impact on clinical workload and patient safety over prolonged monitoring periods, facilitating its integration into standard clinical practices.</div></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"33 ","pages":"Article 100334"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic virtual patient-guided mechanical ventilation treatment: A virtual patient study with mechanical power consideration\",\"authors\":\"Christopher Yew Shuen Ang ,&nbsp;Yeong Shiong Chiew ,&nbsp;Xin Wang ,&nbsp;Ean Hin Ooi ,&nbsp;Mohd Basri Mat Nor ,&nbsp;Matthew E. Cove ,&nbsp;Cong Zhou ,&nbsp;J. Geoffrey Chase\",\"doi\":\"10.1016/j.ifacsc.2025.100334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Objective</h3><div>: Computerised decision support systems (CDSS) in mechanical ventilation (MV) provide individualised, closed-loop treatment but often require extensive input parameters, which are challenging to obtain continuously in clinical settings. Many also fail to incorporate mechanical power (<em>MP</em>) and <em>MP ratio</em> — recently identified as significant predictors of patient outcomes. This study introduces the Stochastic Virtual Patient Ventilation Protocol (SVP VENT), a model-based CDSS addressing these limitations.</div></div><div><h3>Methods</h3><div>: The SVP VENT Protocol integrates a stochastic virtual patient model to predict temporal lung elastance, <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>r</mi><mi>s</mi></mrow></msub></math></span>, trends and deliver closed-loop, lung protective ventilation minimising <em>MP ratio</em> and driving pressure. The protocol was validated against the VENT and SiVENT protocols using an established virtual patient platform comprising over 1229 h of both volume control (VC) and pressure control (PC) retrospective MV data. Patient responses were monitored to ensure adherence to accepted clinical safety guidelines.</div></div><div><h3>Results</h3><div>: The SVP VENT protocol consistently outperformed retrospective clinical data, VENT and SiVENT protocols in ensuring adherence to clinical safety metrics, achieving an all-adherence rate of <span><math><mo>∼</mo></math></span>57% and <span><math><mo>∼</mo></math></span>67% for the VC and PC cohorts, respectively. Across cohorts, the protocol maintained <em>MP</em> and <em>MP ratio</em> levels below safety thresholds (12 J/min and 4.5, respectively), and extended intervention intervals up to 3 h, potentially reducing clinical workload.</div></div><div><h3>Conclusion</h3><div>: Overall, the virtual trial demonstrates the SVP VENT protocol’s potential to enhance MV management by extending intervention intervals, while maintaining patient safety. These findings support initial clinical trials to evaluate the protocol’s impact on clinical workload and patient safety over prolonged monitoring periods, facilitating its integration into standard clinical practices.</div></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"33 \",\"pages\":\"Article 100334\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468601825000409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601825000409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景与目的:机械通气(MV)中的计算机化决策支持系统(CDSS)提供个性化的闭环治疗,但通常需要大量的输入参数,这在临床环境中很难连续获得。许多也没有纳入机械功率(MP)和MP比率-最近被确定为患者预后的重要预测因素。本研究介绍了随机虚拟患者通气协议(SVP VENT),这是一种基于模型的CDSS,解决了这些局限性。方法:SVP VENT方案集成了一个随机虚拟患者模型来预测时间肺弹性、er、趋势,并提供闭环、肺保护性通气最小化MP比和驱动压力。使用已建立的虚拟患者平台,包括超过1229小时的音量控制(VC)和压力控制(PC)回顾性MV数据,根据VENT和SiVENT协议验证该方案。监测患者的反应,以确保遵守公认的临床安全指南。结果:SVP VENT方案在确保临床安全指标的依从性方面始终优于回顾性临床数据、VENT和SiVENT方案,VC和PC队列的全依从率分别达到57%和67%。在整个队列中,该方案将MP和MP比率维持在安全阈值以下(分别为12 J/min和4.5 J/min),并将干预间隔延长至3小时,从而可能减少临床工作量。结论:总的来说,虚拟试验证明了SVP VENT方案通过延长干预间隔来增强中压管理的潜力,同时保持患者安全。这些发现支持初步临床试验,以评估该方案在长期监测期间对临床工作量和患者安全的影响,促进其融入标准临床实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic virtual patient-guided mechanical ventilation treatment: A virtual patient study with mechanical power consideration

Background and Objective

: Computerised decision support systems (CDSS) in mechanical ventilation (MV) provide individualised, closed-loop treatment but often require extensive input parameters, which are challenging to obtain continuously in clinical settings. Many also fail to incorporate mechanical power (MP) and MP ratio — recently identified as significant predictors of patient outcomes. This study introduces the Stochastic Virtual Patient Ventilation Protocol (SVP VENT), a model-based CDSS addressing these limitations.

Methods

: The SVP VENT Protocol integrates a stochastic virtual patient model to predict temporal lung elastance, Ers, trends and deliver closed-loop, lung protective ventilation minimising MP ratio and driving pressure. The protocol was validated against the VENT and SiVENT protocols using an established virtual patient platform comprising over 1229 h of both volume control (VC) and pressure control (PC) retrospective MV data. Patient responses were monitored to ensure adherence to accepted clinical safety guidelines.

Results

: The SVP VENT protocol consistently outperformed retrospective clinical data, VENT and SiVENT protocols in ensuring adherence to clinical safety metrics, achieving an all-adherence rate of 57% and 67% for the VC and PC cohorts, respectively. Across cohorts, the protocol maintained MP and MP ratio levels below safety thresholds (12 J/min and 4.5, respectively), and extended intervention intervals up to 3 h, potentially reducing clinical workload.

Conclusion

: Overall, the virtual trial demonstrates the SVP VENT protocol’s potential to enhance MV management by extending intervention intervals, while maintaining patient safety. These findings support initial clinical trials to evaluate the protocol’s impact on clinical workload and patient safety over prolonged monitoring periods, facilitating its integration into standard clinical practices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信