评估心脏病学中启用人工智能的医学测试:最佳实践

IF 2.5 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Jonas L. Isaksen , Malene Nørregaard , Martin Manninger , Dobromir Dobrev , Thomas Jespersen , Ben Hermans , Jordi Heijman , Gernot Plank , Daniel Scherr , Thomas Pock , Vajira Thambawita , Michael A. Riegler , Jørgen K. Kanters , Dominik Linz
{"title":"评估心脏病学中启用人工智能的医学测试:最佳实践","authors":"Jonas L. Isaksen ,&nbsp;Malene Nørregaard ,&nbsp;Martin Manninger ,&nbsp;Dobromir Dobrev ,&nbsp;Thomas Jespersen ,&nbsp;Ben Hermans ,&nbsp;Jordi Heijman ,&nbsp;Gernot Plank ,&nbsp;Daniel Scherr ,&nbsp;Thomas Pock ,&nbsp;Vajira Thambawita ,&nbsp;Michael A. Riegler ,&nbsp;Jørgen K. Kanters ,&nbsp;Dominik Linz","doi":"10.1016/j.ijcha.2025.101783","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning methods are increasingly used in cardiovascular research. In order to highlight opportunities and challenges of the evaluation of studies applying machine learning, we use examples from cardiac electrophysiology, a field characterized by large and often imbalanced amounts of data. We provide recommendations and guidance on evaluating and presenting supervised machine learning studies. We recommend proper cohort selection, keeping training and testing data strictly separate, and comparing results to a reference model without machine learning as basic principles to ensure the quality of studies using machine learning methods. We furthermore recommend specific metrics and plots when reporting on machine learning including on models for multi-channel time series or images. This Best Practice paper represents a possible blueprint to help evaluate machine learning-based medical tests in cardiac electrophysiology and beyond.</div></div>","PeriodicalId":38026,"journal":{"name":"IJC Heart and Vasculature","volume":"60 ","pages":"Article 101783"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating artificial intelligence-enabled medical tests in cardiology: Best practice\",\"authors\":\"Jonas L. Isaksen ,&nbsp;Malene Nørregaard ,&nbsp;Martin Manninger ,&nbsp;Dobromir Dobrev ,&nbsp;Thomas Jespersen ,&nbsp;Ben Hermans ,&nbsp;Jordi Heijman ,&nbsp;Gernot Plank ,&nbsp;Daniel Scherr ,&nbsp;Thomas Pock ,&nbsp;Vajira Thambawita ,&nbsp;Michael A. Riegler ,&nbsp;Jørgen K. Kanters ,&nbsp;Dominik Linz\",\"doi\":\"10.1016/j.ijcha.2025.101783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Machine learning methods are increasingly used in cardiovascular research. In order to highlight opportunities and challenges of the evaluation of studies applying machine learning, we use examples from cardiac electrophysiology, a field characterized by large and often imbalanced amounts of data. We provide recommendations and guidance on evaluating and presenting supervised machine learning studies. We recommend proper cohort selection, keeping training and testing data strictly separate, and comparing results to a reference model without machine learning as basic principles to ensure the quality of studies using machine learning methods. We furthermore recommend specific metrics and plots when reporting on machine learning including on models for multi-channel time series or images. This Best Practice paper represents a possible blueprint to help evaluate machine learning-based medical tests in cardiac electrophysiology and beyond.</div></div>\",\"PeriodicalId\":38026,\"journal\":{\"name\":\"IJC Heart and Vasculature\",\"volume\":\"60 \",\"pages\":\"Article 101783\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJC Heart and Vasculature\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352906725001861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJC Heart and Vasculature","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352906725001861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

机器学习方法越来越多地应用于心血管研究。为了强调应用机器学习评估研究的机遇和挑战,我们使用了心脏电生理学的例子,这是一个以大量且经常不平衡的数据为特征的领域。我们为评估和展示监督机器学习研究提供建议和指导。我们建议适当的队列选择,将训练和测试数据严格分开,并将结果与没有机器学习的参考模型进行比较作为基本原则,以确保使用机器学习方法的研究质量。在报告机器学习时,我们进一步推荐具体的指标和图表,包括多通道时间序列或图像的模型。这篇最佳实践论文代表了一个可能的蓝图,可以帮助评估心脏电生理学等领域基于机器学习的医学测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evaluating artificial intelligence-enabled medical tests in cardiology: Best practice

Evaluating artificial intelligence-enabled medical tests in cardiology: Best practice
Machine learning methods are increasingly used in cardiovascular research. In order to highlight opportunities and challenges of the evaluation of studies applying machine learning, we use examples from cardiac electrophysiology, a field characterized by large and often imbalanced amounts of data. We provide recommendations and guidance on evaluating and presenting supervised machine learning studies. We recommend proper cohort selection, keeping training and testing data strictly separate, and comparing results to a reference model without machine learning as basic principles to ensure the quality of studies using machine learning methods. We furthermore recommend specific metrics and plots when reporting on machine learning including on models for multi-channel time series or images. This Best Practice paper represents a possible blueprint to help evaluate machine learning-based medical tests in cardiac electrophysiology and beyond.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IJC Heart and Vasculature
IJC Heart and Vasculature Medicine-Cardiology and Cardiovascular Medicine
CiteScore
4.90
自引率
10.30%
发文量
216
审稿时长
56 days
期刊介绍: IJC Heart & Vasculature is an online-only, open-access journal dedicated to publishing original articles and reviews (also Editorials and Letters to the Editor) which report on structural and functional cardiovascular pathology, with an emphasis on imaging and disease pathophysiology. Articles must be authentic, educational, clinically relevant, and original in their content and scientific approach. IJC Heart & Vasculature requires the highest standards of scientific integrity in order to promote reliable, reproducible and verifiable research findings. All authors are advised to consult the Principles of Ethical Publishing in the International Journal of Cardiology before submitting a manuscript. Submission of a manuscript to this journal gives the publisher the right to publish that paper if it is accepted. Manuscripts may be edited to improve clarity and expression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信