肩胛骨运动学与任务特异性:载荷方向的影响

IF 2.4 3区 医学 Q3 BIOPHYSICS
Erin C.S. Lee , Nathan M. Young , Rebekah L. Lawrence , Michael J. Rainbow
{"title":"肩胛骨运动学与任务特异性:载荷方向的影响","authors":"Erin C.S. Lee ,&nbsp;Nathan M. Young ,&nbsp;Rebekah L. Lawrence ,&nbsp;Michael J. Rainbow","doi":"10.1016/j.jbiomech.2025.112932","DOIUrl":null,"url":null,"abstract":"<div><div>Our current understanding of healthy scapula motion is mainly based on studying the shoulder when it is generating an abduction torque against gravity. However, the shoulder can perform diverse tasks beyond abduction. In particular, little attention has been given to how scapula motion contributes to concentric adduction despite its involvement in high-demand tasks such as rock climbing and wheelchair transfers. Investigating scapular kinematics during concentrically loaded arm-lowering can provide insight into the mechanical demands underlying healthy scapula motion. In this study, we combined biplanar videoradiography and optical motion capture with a controllable cable machine to compare the three-dimensional humerothoracic, glenohumeral, and scapulothoracic kinematics between a weighted pull-down task (involving concentric shoulder adduction) and a weighted press-up task (involving concentric shoulder abduction) in ten healthy adults. We observed significantly more scapulothoracic upward rotation and less glenohumeral abduction during concentric adduction than concentric abduction. Our findings indicate that scapula upward rotation is not simply a function of overall humerothoracic elevation, but instead varies in a load-specific manner – potentially to orient the glenoid in a way that facilitates glenohumeral joint stability. We also observed substantial inter-individual variability in scapular kinematics within a task, and in how individuals responded to the different tasks. Our findings help provide a more well-rounded understanding of healthy scapular kinematics such that we can better identify and treat unhealthy motion (i.e., dyskinesis). Our findings can also inform musculoskeletal models that simulate scapulothoracic kinematics.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"191 ","pages":"Article 112932"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scapular kinematics and task specificity: The effect of load direction\",\"authors\":\"Erin C.S. Lee ,&nbsp;Nathan M. Young ,&nbsp;Rebekah L. Lawrence ,&nbsp;Michael J. Rainbow\",\"doi\":\"10.1016/j.jbiomech.2025.112932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Our current understanding of healthy scapula motion is mainly based on studying the shoulder when it is generating an abduction torque against gravity. However, the shoulder can perform diverse tasks beyond abduction. In particular, little attention has been given to how scapula motion contributes to concentric adduction despite its involvement in high-demand tasks such as rock climbing and wheelchair transfers. Investigating scapular kinematics during concentrically loaded arm-lowering can provide insight into the mechanical demands underlying healthy scapula motion. In this study, we combined biplanar videoradiography and optical motion capture with a controllable cable machine to compare the three-dimensional humerothoracic, glenohumeral, and scapulothoracic kinematics between a weighted pull-down task (involving concentric shoulder adduction) and a weighted press-up task (involving concentric shoulder abduction) in ten healthy adults. We observed significantly more scapulothoracic upward rotation and less glenohumeral abduction during concentric adduction than concentric abduction. Our findings indicate that scapula upward rotation is not simply a function of overall humerothoracic elevation, but instead varies in a load-specific manner – potentially to orient the glenoid in a way that facilitates glenohumeral joint stability. We also observed substantial inter-individual variability in scapular kinematics within a task, and in how individuals responded to the different tasks. Our findings help provide a more well-rounded understanding of healthy scapular kinematics such that we can better identify and treat unhealthy motion (i.e., dyskinesis). Our findings can also inform musculoskeletal models that simulate scapulothoracic kinematics.</div></div>\",\"PeriodicalId\":15168,\"journal\":{\"name\":\"Journal of biomechanics\",\"volume\":\"191 \",\"pages\":\"Article 112932\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021929025004440\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025004440","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们目前对健康肩胛骨运动的理解主要是基于对肩膀在重力作用下产生外展扭矩的研究。然而,除了外展,肩膀还可以执行多种任务。特别是,很少有人关注肩胛骨运动如何促进同心内收,尽管它涉及攀岩和轮椅搬运等高要求任务。研究集中负重下臂时肩胛骨的运动学可以深入了解健康肩胛骨运动的机械需求。在这项研究中,我们结合了双平面放射成像和光学运动捕捉与可控电缆机,比较了10名健康成人在加权下拉任务(包括同心内收)和加权上推任务(包括同心外展)下肩胛骨、肩胛骨和肩胛骨的三维运动学。我们观察到同心内收时肩胛骨向上旋转明显多于同心外收时肩胛肱骨外展。我们的研究结果表明,肩胛骨向上旋转不仅仅是整个肱骨胸段抬高的一个功能,而是以一种特定负荷的方式变化——可能以一种促进肩胛关节稳定的方式调整肩关节的方向。我们还观察到一个任务中肩胛骨运动学的个体间差异,以及个体对不同任务的反应。我们的研究结果有助于对健康的肩胛骨运动学有更全面的了解,这样我们就可以更好地识别和治疗不健康的运动(即运动障碍)。我们的发现也可以为模拟肩胛骨运动学的肌肉骨骼模型提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scapular kinematics and task specificity: The effect of load direction
Our current understanding of healthy scapula motion is mainly based on studying the shoulder when it is generating an abduction torque against gravity. However, the shoulder can perform diverse tasks beyond abduction. In particular, little attention has been given to how scapula motion contributes to concentric adduction despite its involvement in high-demand tasks such as rock climbing and wheelchair transfers. Investigating scapular kinematics during concentrically loaded arm-lowering can provide insight into the mechanical demands underlying healthy scapula motion. In this study, we combined biplanar videoradiography and optical motion capture with a controllable cable machine to compare the three-dimensional humerothoracic, glenohumeral, and scapulothoracic kinematics between a weighted pull-down task (involving concentric shoulder adduction) and a weighted press-up task (involving concentric shoulder abduction) in ten healthy adults. We observed significantly more scapulothoracic upward rotation and less glenohumeral abduction during concentric adduction than concentric abduction. Our findings indicate that scapula upward rotation is not simply a function of overall humerothoracic elevation, but instead varies in a load-specific manner – potentially to orient the glenoid in a way that facilitates glenohumeral joint stability. We also observed substantial inter-individual variability in scapular kinematics within a task, and in how individuals responded to the different tasks. Our findings help provide a more well-rounded understanding of healthy scapular kinematics such that we can better identify and treat unhealthy motion (i.e., dyskinesis). Our findings can also inform musculoskeletal models that simulate scapulothoracic kinematics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信