具有不连续漂移系数的SDEs的保正对数截断EM方法的收敛性

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Amir Haghighi
{"title":"具有不连续漂移系数的SDEs的保正对数截断EM方法的收敛性","authors":"Amir Haghighi","doi":"10.1016/j.amc.2025.129704","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a class of nonlinear stochastic differential equations with positive solutions and discontinuous drift coefficients is studied, considering both theoretical and computational aspects. The theoretical results focus on the existence of a unique positive solution for such SDEs via the approach introduced by Müller-Gronbach et al. (2022), and the computational aspect utilises the truncated Euler-Maruyama method proposed by Li et al. (2023) together with a logarithmic transformation that ensures a positive approximation to the original solution. The convergence of the numerical method is investigated, and the boundedness of the <span><math><mi>p</mi></math></span>-th moment is obtained. Finally, the proposed method is used to verify the convergence with the help of some numerical examples.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"510 ","pages":"Article 129704"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence of a positivity preserving logarithmic truncated EM method for SDEs with discontinuous drift coefficients\",\"authors\":\"Amir Haghighi\",\"doi\":\"10.1016/j.amc.2025.129704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a class of nonlinear stochastic differential equations with positive solutions and discontinuous drift coefficients is studied, considering both theoretical and computational aspects. The theoretical results focus on the existence of a unique positive solution for such SDEs via the approach introduced by Müller-Gronbach et al. (2022), and the computational aspect utilises the truncated Euler-Maruyama method proposed by Li et al. (2023) together with a logarithmic transformation that ensures a positive approximation to the original solution. The convergence of the numerical method is investigated, and the boundedness of the <span><math><mi>p</mi></math></span>-th moment is obtained. Finally, the proposed method is used to verify the convergence with the help of some numerical examples.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"510 \",\"pages\":\"Article 129704\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325004308\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325004308","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文从理论和计算两个方面研究了一类具有不连续漂移系数的正解非线性随机微分方程。理论结果侧重于通过m ller- gronbach等人(2022)引入的方法对此类SDEs的唯一正解的存在性,计算方面利用Li等人(2023)提出的截断Euler-Maruyama方法以及确保对原始解的正逼近的对数变换。研究了数值方法的收敛性,得到了第p阶矩的有界性。最后,通过数值算例验证了该方法的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of a positivity preserving logarithmic truncated EM method for SDEs with discontinuous drift coefficients
In this paper, a class of nonlinear stochastic differential equations with positive solutions and discontinuous drift coefficients is studied, considering both theoretical and computational aspects. The theoretical results focus on the existence of a unique positive solution for such SDEs via the approach introduced by Müller-Gronbach et al. (2022), and the computational aspect utilises the truncated Euler-Maruyama method proposed by Li et al. (2023) together with a logarithmic transformation that ensures a positive approximation to the original solution. The convergence of the numerical method is investigated, and the boundedness of the p-th moment is obtained. Finally, the proposed method is used to verify the convergence with the help of some numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信