Qiang Chen , Wenhui Zhao , Ce Xiao , Zhibo Yang , George Chatzigeorgiou , Fodil Meraghni , Xuefeng Chen
{"title":"周期性复合材料的混合均匀化神经网络","authors":"Qiang Chen , Wenhui Zhao , Ce Xiao , Zhibo Yang , George Chatzigeorgiou , Fodil Meraghni , Xuefeng Chen","doi":"10.1016/j.ijsolstr.2025.113622","DOIUrl":null,"url":null,"abstract":"<div><div>A new physics-informed deep homogenization neural network (DHN) framework is proposed to identify the homogenized and local behaviors in periodic heterogeneous microstructures. To achieve this, the displacement field is decomposed into averaged and fluctuating contributions, with the local unit cell solution obtained via neural networks subject to periodic boundary conditions. The periodic microstructures are divided into subdomains representing the fiber and matrix phases, respectively. A key contribution of the proposed method is the marriage of elasticity solution and physics-informed neural network to each phase of the composite, namely, the fiber phase as a mesh-free component whose fluctuating displacements are expanded using a discrete Fourier transform, and the matrix phase using material points with fluctuating displacements handled through fully connected neural network layers. The interfacial continuity conditions are enforced by minimizing the traction and displacement differences at separate material points along the interface. Transfer learning is exploited further to facilitate training new microstructures from pre-trained geometry. This hybrid formulation inherently satisfies stress equilibrium equations within the fiber, while efficiently handling the periodic boundary conditions of hexagonal and square unit cells via a series of trainable sinusoidal functions. The innovative use of distinct neural network architectures enables accurate and efficient predictions of displacement and stress when discontinuities are present in the solution fields across the interface. We validate the proposed DHN with the finite-element predictions for unidirectional composites comprised of elastic fiber significantly stiffer than the matrix, under various volume fractions and loading conditions.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"322 ","pages":"Article 113622"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid homogenization neural networks for periodic composites\",\"authors\":\"Qiang Chen , Wenhui Zhao , Ce Xiao , Zhibo Yang , George Chatzigeorgiou , Fodil Meraghni , Xuefeng Chen\",\"doi\":\"10.1016/j.ijsolstr.2025.113622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A new physics-informed deep homogenization neural network (DHN) framework is proposed to identify the homogenized and local behaviors in periodic heterogeneous microstructures. To achieve this, the displacement field is decomposed into averaged and fluctuating contributions, with the local unit cell solution obtained via neural networks subject to periodic boundary conditions. The periodic microstructures are divided into subdomains representing the fiber and matrix phases, respectively. A key contribution of the proposed method is the marriage of elasticity solution and physics-informed neural network to each phase of the composite, namely, the fiber phase as a mesh-free component whose fluctuating displacements are expanded using a discrete Fourier transform, and the matrix phase using material points with fluctuating displacements handled through fully connected neural network layers. The interfacial continuity conditions are enforced by minimizing the traction and displacement differences at separate material points along the interface. Transfer learning is exploited further to facilitate training new microstructures from pre-trained geometry. This hybrid formulation inherently satisfies stress equilibrium equations within the fiber, while efficiently handling the periodic boundary conditions of hexagonal and square unit cells via a series of trainable sinusoidal functions. The innovative use of distinct neural network architectures enables accurate and efficient predictions of displacement and stress when discontinuities are present in the solution fields across the interface. We validate the proposed DHN with the finite-element predictions for unidirectional composites comprised of elastic fiber significantly stiffer than the matrix, under various volume fractions and loading conditions.</div></div>\",\"PeriodicalId\":14311,\"journal\":{\"name\":\"International Journal of Solids and Structures\",\"volume\":\"322 \",\"pages\":\"Article 113622\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Solids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020768325004081\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768325004081","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Hybrid homogenization neural networks for periodic composites
A new physics-informed deep homogenization neural network (DHN) framework is proposed to identify the homogenized and local behaviors in periodic heterogeneous microstructures. To achieve this, the displacement field is decomposed into averaged and fluctuating contributions, with the local unit cell solution obtained via neural networks subject to periodic boundary conditions. The periodic microstructures are divided into subdomains representing the fiber and matrix phases, respectively. A key contribution of the proposed method is the marriage of elasticity solution and physics-informed neural network to each phase of the composite, namely, the fiber phase as a mesh-free component whose fluctuating displacements are expanded using a discrete Fourier transform, and the matrix phase using material points with fluctuating displacements handled through fully connected neural network layers. The interfacial continuity conditions are enforced by minimizing the traction and displacement differences at separate material points along the interface. Transfer learning is exploited further to facilitate training new microstructures from pre-trained geometry. This hybrid formulation inherently satisfies stress equilibrium equations within the fiber, while efficiently handling the periodic boundary conditions of hexagonal and square unit cells via a series of trainable sinusoidal functions. The innovative use of distinct neural network architectures enables accurate and efficient predictions of displacement and stress when discontinuities are present in the solution fields across the interface. We validate the proposed DHN with the finite-element predictions for unidirectional composites comprised of elastic fiber significantly stiffer than the matrix, under various volume fractions and loading conditions.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.