在二氧化钛-少层石墨烯和掺ta的二氧化钛(光)催化剂上,低温光催化辅助水热过程中高效和选择性的葡萄糖转化

Hamza El Marouazi , Insaf Abdouli , Nadine Essayem , Chantal Guillard , Valérie Keller , Izabela Janowska
{"title":"在二氧化钛-少层石墨烯和掺ta的二氧化钛(光)催化剂上,低温光催化辅助水热过程中高效和选择性的葡萄糖转化","authors":"Hamza El Marouazi ,&nbsp;Insaf Abdouli ,&nbsp;Nadine Essayem ,&nbsp;Chantal Guillard ,&nbsp;Valérie Keller ,&nbsp;Izabela Janowska","doi":"10.1016/j.clce.2025.100205","DOIUrl":null,"url":null,"abstract":"<div><div>The study reports significantly enhanced glucose conversion under coupled low temperature hydrothermal-photocatalytic conditions with TiO<sub>2</sub> nanoparticles (NPs) catalysts and the formation of various high-value-added chemicals such as gluconic acid, arabinose, erythrose and presumably levulinic acid (LevA) isomer, referred to single activation mode. TiO<sub>2</sub> NPs, TiO<sub>2</sub> combined with few layer graphene (FLG/TiO<sub>2</sub>) and TiO<sub>2</sub> doped with tantalum catalysts with different physicochemical features, including surface acidity properties are investigated (Lewis acid sites in the catalysts are assessed by dihydroxyacetone (DHA) transformation and pyridine adsorption by FTIR). The doping with Ta is beneficial in the photocatalytic conversion, while the FLG integration has a positive impact in photo-, and especially in thermal- and coupled process. On the other hand, the coupled process reveals the synergetic effect of the photo and thermal mode with doubled/tripled conversion of glucose, particularly for FLG/TiO<sub>2</sub> (1 wt% of FLG). The improved properties of this original catalyst are related to high density of jaggy FLG edges as significant acid sites, sites for glucose adsorption and TiO<sub>2</sub> efficient surface and interface formation, along with high charge transport and heat transfer via the conjugated <em>C</em> = <em>C</em> lattice. The results pave the way for ongoing engineering of catalysts and processes for efficient and selective biomass valorization at low thermal energy.</div></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"11 ","pages":"Article 100205"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and selective glucose conversion in a low temperature photocatalysis-assisted hydrothermal process over TiO2-few layer graphene and Ta-doped TiO2 (photo)catalysts\",\"authors\":\"Hamza El Marouazi ,&nbsp;Insaf Abdouli ,&nbsp;Nadine Essayem ,&nbsp;Chantal Guillard ,&nbsp;Valérie Keller ,&nbsp;Izabela Janowska\",\"doi\":\"10.1016/j.clce.2025.100205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The study reports significantly enhanced glucose conversion under coupled low temperature hydrothermal-photocatalytic conditions with TiO<sub>2</sub> nanoparticles (NPs) catalysts and the formation of various high-value-added chemicals such as gluconic acid, arabinose, erythrose and presumably levulinic acid (LevA) isomer, referred to single activation mode. TiO<sub>2</sub> NPs, TiO<sub>2</sub> combined with few layer graphene (FLG/TiO<sub>2</sub>) and TiO<sub>2</sub> doped with tantalum catalysts with different physicochemical features, including surface acidity properties are investigated (Lewis acid sites in the catalysts are assessed by dihydroxyacetone (DHA) transformation and pyridine adsorption by FTIR). The doping with Ta is beneficial in the photocatalytic conversion, while the FLG integration has a positive impact in photo-, and especially in thermal- and coupled process. On the other hand, the coupled process reveals the synergetic effect of the photo and thermal mode with doubled/tripled conversion of glucose, particularly for FLG/TiO<sub>2</sub> (1 wt% of FLG). The improved properties of this original catalyst are related to high density of jaggy FLG edges as significant acid sites, sites for glucose adsorption and TiO<sub>2</sub> efficient surface and interface formation, along with high charge transport and heat transfer via the conjugated <em>C</em> = <em>C</em> lattice. The results pave the way for ongoing engineering of catalysts and processes for efficient and selective biomass valorization at low thermal energy.</div></div>\",\"PeriodicalId\":100251,\"journal\":{\"name\":\"Cleaner Chemical Engineering\",\"volume\":\"11 \",\"pages\":\"Article 100205\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772782325000609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782325000609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该研究报道了在低温水热-光催化耦合条件下,TiO2纳米颗粒(NPs)催化剂显著增强了葡萄糖的转化,并形成了多种高附加值的化学物质,如葡萄糖酸、阿拉伯糖、红细胞和可能的左丙酸(LevA)异构体,即单活化模式。研究了TiO2 NPs、TiO2与少层石墨烯结合(FLG/TiO2)和TiO2掺杂具有不同物理化学特征的钽催化剂,包括表面酸性性质(通过二羟基丙酮(DHA)转化和红外光谱(FTIR)对催化剂中的Lewis酸位点进行了评估)。Ta的掺杂有利于光催化转化,而FLG的集成对光催化,尤其是热耦合过程有积极的影响。另一方面,耦合过程揭示了光和热模式对葡萄糖转化率的协同作用,特别是对FLG/TiO2 (FLG的1 wt%)。这种原始催化剂的性能的改善与高密度锯齿状FLG边缘作为重要的酸位、葡萄糖吸附位和TiO2高效的表面和界面形成有关,以及通过共轭C = C晶格的高电荷传输和传热。该结果为正在进行的低热能高效和选择性生物质增值的催化剂和工艺的工程铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient and selective glucose conversion in a low temperature photocatalysis-assisted hydrothermal process over TiO2-few layer graphene and Ta-doped TiO2 (photo)catalysts

Efficient and selective glucose conversion in a low temperature photocatalysis-assisted hydrothermal process over TiO2-few layer graphene and Ta-doped TiO2 (photo)catalysts
The study reports significantly enhanced glucose conversion under coupled low temperature hydrothermal-photocatalytic conditions with TiO2 nanoparticles (NPs) catalysts and the formation of various high-value-added chemicals such as gluconic acid, arabinose, erythrose and presumably levulinic acid (LevA) isomer, referred to single activation mode. TiO2 NPs, TiO2 combined with few layer graphene (FLG/TiO2) and TiO2 doped with tantalum catalysts with different physicochemical features, including surface acidity properties are investigated (Lewis acid sites in the catalysts are assessed by dihydroxyacetone (DHA) transformation and pyridine adsorption by FTIR). The doping with Ta is beneficial in the photocatalytic conversion, while the FLG integration has a positive impact in photo-, and especially in thermal- and coupled process. On the other hand, the coupled process reveals the synergetic effect of the photo and thermal mode with doubled/tripled conversion of glucose, particularly for FLG/TiO2 (1 wt% of FLG). The improved properties of this original catalyst are related to high density of jaggy FLG edges as significant acid sites, sites for glucose adsorption and TiO2 efficient surface and interface formation, along with high charge transport and heat transfer via the conjugated C = C lattice. The results pave the way for ongoing engineering of catalysts and processes for efficient and selective biomass valorization at low thermal energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信