D.H. Xie , Y. Tang , T.Y. Jiao , Z. An , F. Bai , X. Fang , Y.H. Fan , Y.X. Fan , B.S. Gao , J.F. Han , B. Li , G. Liu , W.P. Lin , J.H. Tan , X.D. Tang , C. Wen , P. Wang , Q. Wang
{"title":"四川大学3mv tandem加速器的终端电压校准","authors":"D.H. Xie , Y. Tang , T.Y. Jiao , Z. An , F. Bai , X. Fang , Y.H. Fan , Y.X. Fan , B.S. Gao , J.F. Han , B. Li , G. Liu , W.P. Lin , J.H. Tan , X.D. Tang , C. Wen , P. Wang , Q. Wang","doi":"10.1016/j.nimb.2025.165829","DOIUrl":null,"url":null,"abstract":"<div><div>The 3 MV Tandetron accelerator at Sichuan University has been calibrated across a wider terminal voltage range (500–2100 kV), employing the narrow resonance of the <sup>13</sup>C(<span><math><mrow><mi>α</mi><mo>,</mo><mi>n</mi></mrow></math></span>)<sup>16</sup>O reaction along with neutron threshold measurements from <sup>7</sup>Li(<span><math><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></math></span>)<sup>7</sup>Be, <sup>13</sup>C(<span><math><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></math></span>)<sup>13</sup>N, and <sup>19</sup>F(<span><math><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></math></span>)<sup>19</sup>Ne reactions. The calibration demonstrates excellent reproducibility of energy measurements over a two-year period, with about 0.12 keV variation in repeated measurements at <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>=</mo><mn>1055</mn><mo>.</mo><mn>63</mn></mrow></math></span> keV. However, an approximate 5 keV shift observed in the <sup>7</sup>Li(<span><math><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></math></span>)<sup>7</sup>Be threshold energy over seven years demonstrates the necessity for periodic recalibration. Given the sub-keV reproducibility demonstrated over a two-year period, we recommend recalibrating at least every two years to ensure ongoing energy accuracy for this accelerator. The calibration parameters are a = 0.9918 ± 0.0005 and b = 4.3104 ± 0.5319 kV, where V = <span><math><mrow><mi>a</mi><mi>⋅</mi><msub><mrow><mi>V</mi></mrow><mrow><mtext>set</mtext></mrow></msub></mrow></math></span> + b. This work establishes a robust calibration framework that ensures reliable accelerator performance for nuclear physics researches and applications.</div></div>","PeriodicalId":19380,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","volume":"568 ","pages":"Article 165829"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terminal voltage calibration of a 3 MV Tandetron accelerator at Sichuan University, China\",\"authors\":\"D.H. Xie , Y. Tang , T.Y. Jiao , Z. An , F. Bai , X. Fang , Y.H. Fan , Y.X. Fan , B.S. Gao , J.F. Han , B. Li , G. Liu , W.P. Lin , J.H. Tan , X.D. Tang , C. Wen , P. Wang , Q. Wang\",\"doi\":\"10.1016/j.nimb.2025.165829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The 3 MV Tandetron accelerator at Sichuan University has been calibrated across a wider terminal voltage range (500–2100 kV), employing the narrow resonance of the <sup>13</sup>C(<span><math><mrow><mi>α</mi><mo>,</mo><mi>n</mi></mrow></math></span>)<sup>16</sup>O reaction along with neutron threshold measurements from <sup>7</sup>Li(<span><math><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></math></span>)<sup>7</sup>Be, <sup>13</sup>C(<span><math><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></math></span>)<sup>13</sup>N, and <sup>19</sup>F(<span><math><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></math></span>)<sup>19</sup>Ne reactions. The calibration demonstrates excellent reproducibility of energy measurements over a two-year period, with about 0.12 keV variation in repeated measurements at <span><math><mrow><msub><mrow><mi>E</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>=</mo><mn>1055</mn><mo>.</mo><mn>63</mn></mrow></math></span> keV. However, an approximate 5 keV shift observed in the <sup>7</sup>Li(<span><math><mrow><mi>p</mi><mo>,</mo><mi>n</mi></mrow></math></span>)<sup>7</sup>Be threshold energy over seven years demonstrates the necessity for periodic recalibration. Given the sub-keV reproducibility demonstrated over a two-year period, we recommend recalibrating at least every two years to ensure ongoing energy accuracy for this accelerator. The calibration parameters are a = 0.9918 ± 0.0005 and b = 4.3104 ± 0.5319 kV, where V = <span><math><mrow><mi>a</mi><mi>⋅</mi><msub><mrow><mi>V</mi></mrow><mrow><mtext>set</mtext></mrow></msub></mrow></math></span> + b. This work establishes a robust calibration framework that ensures reliable accelerator performance for nuclear physics researches and applications.</div></div>\",\"PeriodicalId\":19380,\"journal\":{\"name\":\"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms\",\"volume\":\"568 \",\"pages\":\"Article 165829\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168583X25002198\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168583X25002198","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Terminal voltage calibration of a 3 MV Tandetron accelerator at Sichuan University, China
The 3 MV Tandetron accelerator at Sichuan University has been calibrated across a wider terminal voltage range (500–2100 kV), employing the narrow resonance of the 13C()16O reaction along with neutron threshold measurements from 7Li()7Be, 13C()13N, and 19F()19Ne reactions. The calibration demonstrates excellent reproducibility of energy measurements over a two-year period, with about 0.12 keV variation in repeated measurements at keV. However, an approximate 5 keV shift observed in the 7Li()7Be threshold energy over seven years demonstrates the necessity for periodic recalibration. Given the sub-keV reproducibility demonstrated over a two-year period, we recommend recalibrating at least every two years to ensure ongoing energy accuracy for this accelerator. The calibration parameters are a = 0.9918 ± 0.0005 and b = 4.3104 ± 0.5319 kV, where V = + b. This work establishes a robust calibration framework that ensures reliable accelerator performance for nuclear physics researches and applications.
期刊介绍:
Section B of Nuclear Instruments and Methods in Physics Research covers all aspects of the interaction of energetic beams with atoms, molecules and aggregate forms of matter. This includes ion beam analysis and ion beam modification of materials as well as basic data of importance for these studies. Topics of general interest include: atomic collisions in solids, particle channelling, all aspects of collision cascades, the modification of materials by energetic beams, ion implantation, irradiation - induced changes in materials, the physics and chemistry of beam interactions and the analysis of materials by all forms of energetic radiation. Modification by ion, laser and electron beams for the study of electronic materials, metals, ceramics, insulators, polymers and other important and new materials systems are included. Related studies, such as the application of ion beam analysis to biological, archaeological and geological samples as well as applications to solve problems in planetary science are also welcome. Energetic beams of interest include atomic and molecular ions, neutrons, positrons and muons, plasmas directed at surfaces, electron and photon beams, including laser treated surfaces and studies of solids by photon radiation from rotating anodes, synchrotrons, etc. In addition, the interaction between various forms of radiation and radiation-induced deposition processes are relevant.