Biyan Zhuang , Nengneng Xu , Xiaoqian Xu , Lingyu Dai , Yongxia Wang , Min Wang , Kai Wu , Jinli Qiao
{"title":"分级介孔Fe-N-C单原子催化剂在可充电锌空气电池中的高效氧电催化","authors":"Biyan Zhuang , Nengneng Xu , Xiaoqian Xu , Lingyu Dai , Yongxia Wang , Min Wang , Kai Wu , Jinli Qiao","doi":"10.1016/j.matre.2025.100352","DOIUrl":null,"url":null,"abstract":"<div><div>Rechargeable zinc-air batteries (ZABs) hold significant promise for next-generation energy storage due to their unique advantages in safety, energy and cost. However, their commercial application remains hindered by the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), necessitating the development of highly efficient and durable electrocatalysts. Herein, we report a hierarchically mesoporous Fe-N-C catalyst (Fe-N/MPC<sub>S500</sub>) synthesized via a template-assisted method, which exhibits exceptional bifunctional ORR/OER performance. The Fe-N/MPC<sub>S500</sub> catalyst achieves a positive ORR half-wave potential (0.86 V), along with a low OER over-potential of 510 mV at 10 mA cm<sup>−2</sup>, surpassing those of most non-precious metal catalysts. Furthermore, in a liquid-state ZAB, Fe-N/MPC<sub>S500</sub> delivers a high specific capacity of 708 mAh g<sup>−1</sup>, a peak power density of 409 mW cm<sup>−2</sup>, and stable charge-discharge cycling over 470 h, outperforming commercial Pt/C + Ir/C catalysts. The outstanding performance is attributed to the hierarchical porosity, optimized Fe-N coordination, and enhanced electron/mass transport. This work presents a scalable and low-cost strategy for developing high-performance single-atom catalysts, paving the way for practical deployment in energy conversion and storage technologies.</div></div>","PeriodicalId":61638,"journal":{"name":"材料导报:能源(英文)","volume":"5 3","pages":"Article 100352"},"PeriodicalIF":13.8000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchically mesoporous Fe-N-C single-atom catalysts for efficient oxygen electrocatalysis in rechargeable zinc-air batteries\",\"authors\":\"Biyan Zhuang , Nengneng Xu , Xiaoqian Xu , Lingyu Dai , Yongxia Wang , Min Wang , Kai Wu , Jinli Qiao\",\"doi\":\"10.1016/j.matre.2025.100352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rechargeable zinc-air batteries (ZABs) hold significant promise for next-generation energy storage due to their unique advantages in safety, energy and cost. However, their commercial application remains hindered by the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), necessitating the development of highly efficient and durable electrocatalysts. Herein, we report a hierarchically mesoporous Fe-N-C catalyst (Fe-N/MPC<sub>S500</sub>) synthesized via a template-assisted method, which exhibits exceptional bifunctional ORR/OER performance. The Fe-N/MPC<sub>S500</sub> catalyst achieves a positive ORR half-wave potential (0.86 V), along with a low OER over-potential of 510 mV at 10 mA cm<sup>−2</sup>, surpassing those of most non-precious metal catalysts. Furthermore, in a liquid-state ZAB, Fe-N/MPC<sub>S500</sub> delivers a high specific capacity of 708 mAh g<sup>−1</sup>, a peak power density of 409 mW cm<sup>−2</sup>, and stable charge-discharge cycling over 470 h, outperforming commercial Pt/C + Ir/C catalysts. The outstanding performance is attributed to the hierarchical porosity, optimized Fe-N coordination, and enhanced electron/mass transport. This work presents a scalable and low-cost strategy for developing high-performance single-atom catalysts, paving the way for practical deployment in energy conversion and storage technologies.</div></div>\",\"PeriodicalId\":61638,\"journal\":{\"name\":\"材料导报:能源(英文)\",\"volume\":\"5 3\",\"pages\":\"Article 100352\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"材料导报:能源(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666935825000400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料导报:能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666935825000400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
可充电锌空气电池(ZABs)由于其在安全、能源和成本方面的独特优势,在下一代储能领域具有重要的应用前景。然而,由于氧还原反应(ORR)和析氧反应(OER)的动力学缓慢,它们的商业应用仍然受到阻碍,因此需要开发高效耐用的电催化剂。本文报道了一种通过模板辅助方法合成的分层介孔Fe-N- c催化剂(Fe-N/MPCS500),该催化剂具有优异的双功能ORR/OER性能。Fe-N/MPCS500催化剂的ORR半波电位为正(0.86 V),在10 mA cm - 2下的OER过电位为510 mV,超过了大多数非贵金属催化剂。此外,在液态ZAB中,Fe-N/MPCS500具有708 mAh g−1的高比容量,409 mW cm−2的峰值功率密度,以及超过470 h的稳定充放电循环,优于商用Pt/C + Ir/C催化剂。优异的性能归功于分层孔隙度、优化的Fe-N配位和增强的电子/质量输运。这项工作为开发高性能单原子催化剂提供了一种可扩展和低成本的策略,为能量转换和存储技术的实际部署铺平了道路。
Hierarchically mesoporous Fe-N-C single-atom catalysts for efficient oxygen electrocatalysis in rechargeable zinc-air batteries
Rechargeable zinc-air batteries (ZABs) hold significant promise for next-generation energy storage due to their unique advantages in safety, energy and cost. However, their commercial application remains hindered by the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), necessitating the development of highly efficient and durable electrocatalysts. Herein, we report a hierarchically mesoporous Fe-N-C catalyst (Fe-N/MPCS500) synthesized via a template-assisted method, which exhibits exceptional bifunctional ORR/OER performance. The Fe-N/MPCS500 catalyst achieves a positive ORR half-wave potential (0.86 V), along with a low OER over-potential of 510 mV at 10 mA cm−2, surpassing those of most non-precious metal catalysts. Furthermore, in a liquid-state ZAB, Fe-N/MPCS500 delivers a high specific capacity of 708 mAh g−1, a peak power density of 409 mW cm−2, and stable charge-discharge cycling over 470 h, outperforming commercial Pt/C + Ir/C catalysts. The outstanding performance is attributed to the hierarchical porosity, optimized Fe-N coordination, and enhanced electron/mass transport. This work presents a scalable and low-cost strategy for developing high-performance single-atom catalysts, paving the way for practical deployment in energy conversion and storage technologies.