{"title":"岩石力学中的人工智能","authors":"Gao-Feng Zhao, Yuhang Wu","doi":"10.1016/j.ijrmms.2025.106245","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial Intelligence (AI) has great potential to transform rock mechanics by tackling its inherent complexities, such as anisotropy, nonlinearity, discontinuousness, and multiphase nature. This review explores the evolution of AI, from basic neural networks like the BP model to advanced architectures such as Transformers, and their applications in areas like microstructure reconstruction, prediction of mechanical parameters, and addressing engineering challenges such as rockburst prediction and tunnel deformation. Machine learning techniques, particularly Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), have been crucial in automating tasks like fracture detection and efficiently generating 3D digital rock models. However, the effectiveness of AI in rock mechanics is limited by data scarcity and the need for high-quality datasets. Hybrid approaches, such as combining physics-informed neural networks (PINNs) with traditional numerical methods, offer promising solutions for solving governing equations. Additionally, Large Language Models (LLMs) are emerging as valuable tools for code generation and decision-making support. Despite these advancements, challenges remain, including issues with reproducibility, model interpretability, and adapting AI models to specific domains. Future progress will hinge on the availability of improved datasets, greater interdisciplinary collaboration, and the integration of spatial intelligence frameworks to bridge the gap between AI's theoretical potential and its practical application in rock engineering.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"195 ","pages":"Article 106245"},"PeriodicalIF":7.5000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence in rock mechanics\",\"authors\":\"Gao-Feng Zhao, Yuhang Wu\",\"doi\":\"10.1016/j.ijrmms.2025.106245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Artificial Intelligence (AI) has great potential to transform rock mechanics by tackling its inherent complexities, such as anisotropy, nonlinearity, discontinuousness, and multiphase nature. This review explores the evolution of AI, from basic neural networks like the BP model to advanced architectures such as Transformers, and their applications in areas like microstructure reconstruction, prediction of mechanical parameters, and addressing engineering challenges such as rockburst prediction and tunnel deformation. Machine learning techniques, particularly Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), have been crucial in automating tasks like fracture detection and efficiently generating 3D digital rock models. However, the effectiveness of AI in rock mechanics is limited by data scarcity and the need for high-quality datasets. Hybrid approaches, such as combining physics-informed neural networks (PINNs) with traditional numerical methods, offer promising solutions for solving governing equations. Additionally, Large Language Models (LLMs) are emerging as valuable tools for code generation and decision-making support. Despite these advancements, challenges remain, including issues with reproducibility, model interpretability, and adapting AI models to specific domains. Future progress will hinge on the availability of improved datasets, greater interdisciplinary collaboration, and the integration of spatial intelligence frameworks to bridge the gap between AI's theoretical potential and its practical application in rock engineering.</div></div>\",\"PeriodicalId\":54941,\"journal\":{\"name\":\"International Journal of Rock Mechanics and Mining Sciences\",\"volume\":\"195 \",\"pages\":\"Article 106245\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Rock Mechanics and Mining Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1365160925002229\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160925002229","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Artificial Intelligence (AI) has great potential to transform rock mechanics by tackling its inherent complexities, such as anisotropy, nonlinearity, discontinuousness, and multiphase nature. This review explores the evolution of AI, from basic neural networks like the BP model to advanced architectures such as Transformers, and their applications in areas like microstructure reconstruction, prediction of mechanical parameters, and addressing engineering challenges such as rockburst prediction and tunnel deformation. Machine learning techniques, particularly Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), have been crucial in automating tasks like fracture detection and efficiently generating 3D digital rock models. However, the effectiveness of AI in rock mechanics is limited by data scarcity and the need for high-quality datasets. Hybrid approaches, such as combining physics-informed neural networks (PINNs) with traditional numerical methods, offer promising solutions for solving governing equations. Additionally, Large Language Models (LLMs) are emerging as valuable tools for code generation and decision-making support. Despite these advancements, challenges remain, including issues with reproducibility, model interpretability, and adapting AI models to specific domains. Future progress will hinge on the availability of improved datasets, greater interdisciplinary collaboration, and the integration of spatial intelligence frameworks to bridge the gap between AI's theoretical potential and its practical application in rock engineering.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.