{"title":"实验设计在头孢替尼球形结晶中优化溶剂配比的应用","authors":"Iva Zokić , Jasna Prlić Kardum , Mirta Sabol , Valentina Travančić","doi":"10.1016/j.partic.2025.08.009","DOIUrl":null,"url":null,"abstract":"<div><div>The granulometric properties of active pharmaceutical ingredients (APIs) have significance in the pharmaceutical industry because they affect the handling of powders and thus the efficiency of their production. Ceritinib, an anaplastic lymphoma kinase inhibitor used in the treatment of non-small cell lung cancer, exhibits platy crystals, which results in low flowability and compressibility and negatively affects its production and pharmaceutical application. Spherical crystallization is a promising method for improving the granulometric properties of APIs by transforming unfavorable particle shapes into a more favorable spherical form.</div><div>The aim of this research was to improve the granulometric properties of ceritinib through a combined spherical crystallization method in a system containing tetrahydrofuran as the solvent, water with polyvinylpyrrolidone as the antisolvent, and heptane as the bridging liquid. Experimental design was employed to examine and mathematically describe the influence of the solvent fractions in the selected system on the roundness of the obtained crystals and consequently their compressibility. Spherical crystals of ceritinib with high roundness and improved compressibility compared to powdered ceritinib were obtained. The enhanced powder characteristics facilitate the optimization of the production process, potentially minimizing the necessary number of process steps and increasing efficiency.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"105 ","pages":"Pages 249-258"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of design of experiments for optimizing solvent ratios in ceritinib spherical crystallization\",\"authors\":\"Iva Zokić , Jasna Prlić Kardum , Mirta Sabol , Valentina Travančić\",\"doi\":\"10.1016/j.partic.2025.08.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The granulometric properties of active pharmaceutical ingredients (APIs) have significance in the pharmaceutical industry because they affect the handling of powders and thus the efficiency of their production. Ceritinib, an anaplastic lymphoma kinase inhibitor used in the treatment of non-small cell lung cancer, exhibits platy crystals, which results in low flowability and compressibility and negatively affects its production and pharmaceutical application. Spherical crystallization is a promising method for improving the granulometric properties of APIs by transforming unfavorable particle shapes into a more favorable spherical form.</div><div>The aim of this research was to improve the granulometric properties of ceritinib through a combined spherical crystallization method in a system containing tetrahydrofuran as the solvent, water with polyvinylpyrrolidone as the antisolvent, and heptane as the bridging liquid. Experimental design was employed to examine and mathematically describe the influence of the solvent fractions in the selected system on the roundness of the obtained crystals and consequently their compressibility. Spherical crystals of ceritinib with high roundness and improved compressibility compared to powdered ceritinib were obtained. The enhanced powder characteristics facilitate the optimization of the production process, potentially minimizing the necessary number of process steps and increasing efficiency.</div></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"105 \",\"pages\":\"Pages 249-258\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200125002196\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200125002196","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Application of design of experiments for optimizing solvent ratios in ceritinib spherical crystallization
The granulometric properties of active pharmaceutical ingredients (APIs) have significance in the pharmaceutical industry because they affect the handling of powders and thus the efficiency of their production. Ceritinib, an anaplastic lymphoma kinase inhibitor used in the treatment of non-small cell lung cancer, exhibits platy crystals, which results in low flowability and compressibility and negatively affects its production and pharmaceutical application. Spherical crystallization is a promising method for improving the granulometric properties of APIs by transforming unfavorable particle shapes into a more favorable spherical form.
The aim of this research was to improve the granulometric properties of ceritinib through a combined spherical crystallization method in a system containing tetrahydrofuran as the solvent, water with polyvinylpyrrolidone as the antisolvent, and heptane as the bridging liquid. Experimental design was employed to examine and mathematically describe the influence of the solvent fractions in the selected system on the roundness of the obtained crystals and consequently their compressibility. Spherical crystals of ceritinib with high roundness and improved compressibility compared to powdered ceritinib were obtained. The enhanced powder characteristics facilitate the optimization of the production process, potentially minimizing the necessary number of process steps and increasing efficiency.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.