Kevin D. Eislmayr, Charlotte A. Nichols, Fitty L. Liu, Sudyut Yuvaraj, Janet Peace Babirye, Justin L. Roncaioli, Jenna Vickery, Gregory M. Barton, Cammie F. Lesser, Russell E. Vance
{"title":"巨噬细胞通过tlr诱导的IL-12和IFN-γ从肠上皮细胞龛中协调消除志贺氏菌","authors":"Kevin D. Eislmayr, Charlotte A. Nichols, Fitty L. Liu, Sudyut Yuvaraj, Janet Peace Babirye, Justin L. Roncaioli, Jenna Vickery, Gregory M. Barton, Cammie F. Lesser, Russell E. Vance","doi":"10.1016/j.chom.2025.08.001","DOIUrl":null,"url":null,"abstract":"Bacteria of the genus <em>Shigella</em> replicate in intestinal epithelial cells and cause shigellosis, a severe diarrheal disease that resolves spontaneously in most healthy individuals. During shigellosis, neutrophils are abundantly recruited to the gut and have long been thought to be central to <em>Shigella</em> control and pathogenesis. However, how shigellosis resolves remains poorly understood due to the longstanding lack of a tractable and physiological animal model. Here, using our newly developed <em>Nlrc4</em><sup>–/–</sup><em>Casp11</em><sup>–/–</sup> mouse model of shigellosis, we unexpectedly find no major role for neutrophils in limiting <em>Shigella</em> or in disease pathogenesis. Instead, we uncover an essential role for macrophages in the host control of <em>Shigella</em>. Macrophages respond to <em>Shigella</em> via Toll-like receptors (TLRs) to produce IL-12, which then induces IFN-γ, a cytokine that is essential to control <em>Shigella</em> replication in intestinal epithelial cells. Collectively, our findings reshape our understanding of the innate immune response to <em>Shigella</em>.","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"37 1","pages":""},"PeriodicalIF":18.7000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macrophages orchestrate elimination of Shigella from the intestinal epithelial cell niche via TLR-induced IL-12 and IFN-γ\",\"authors\":\"Kevin D. Eislmayr, Charlotte A. Nichols, Fitty L. Liu, Sudyut Yuvaraj, Janet Peace Babirye, Justin L. Roncaioli, Jenna Vickery, Gregory M. Barton, Cammie F. Lesser, Russell E. Vance\",\"doi\":\"10.1016/j.chom.2025.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacteria of the genus <em>Shigella</em> replicate in intestinal epithelial cells and cause shigellosis, a severe diarrheal disease that resolves spontaneously in most healthy individuals. During shigellosis, neutrophils are abundantly recruited to the gut and have long been thought to be central to <em>Shigella</em> control and pathogenesis. However, how shigellosis resolves remains poorly understood due to the longstanding lack of a tractable and physiological animal model. Here, using our newly developed <em>Nlrc4</em><sup>–/–</sup><em>Casp11</em><sup>–/–</sup> mouse model of shigellosis, we unexpectedly find no major role for neutrophils in limiting <em>Shigella</em> or in disease pathogenesis. Instead, we uncover an essential role for macrophages in the host control of <em>Shigella</em>. Macrophages respond to <em>Shigella</em> via Toll-like receptors (TLRs) to produce IL-12, which then induces IFN-γ, a cytokine that is essential to control <em>Shigella</em> replication in intestinal epithelial cells. Collectively, our findings reshape our understanding of the innate immune response to <em>Shigella</em>.\",\"PeriodicalId\":9693,\"journal\":{\"name\":\"Cell host & microbe\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":18.7000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell host & microbe\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chom.2025.08.001\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell host & microbe","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.chom.2025.08.001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Macrophages orchestrate elimination of Shigella from the intestinal epithelial cell niche via TLR-induced IL-12 and IFN-γ
Bacteria of the genus Shigella replicate in intestinal epithelial cells and cause shigellosis, a severe diarrheal disease that resolves spontaneously in most healthy individuals. During shigellosis, neutrophils are abundantly recruited to the gut and have long been thought to be central to Shigella control and pathogenesis. However, how shigellosis resolves remains poorly understood due to the longstanding lack of a tractable and physiological animal model. Here, using our newly developed Nlrc4–/–Casp11–/– mouse model of shigellosis, we unexpectedly find no major role for neutrophils in limiting Shigella or in disease pathogenesis. Instead, we uncover an essential role for macrophages in the host control of Shigella. Macrophages respond to Shigella via Toll-like receptors (TLRs) to produce IL-12, which then induces IFN-γ, a cytokine that is essential to control Shigella replication in intestinal epithelial cells. Collectively, our findings reshape our understanding of the innate immune response to Shigella.
期刊介绍:
Cell Host & Microbe is a scientific journal that was launched in March 2007. The journal aims to provide a platform for scientists to exchange ideas and concepts related to the study of microbes and their interaction with host organisms at a molecular, cellular, and immune level. It publishes novel findings on a wide range of microorganisms including bacteria, fungi, parasites, and viruses. The journal focuses on the interface between the microbe and its host, whether the host is a vertebrate, invertebrate, or plant, and whether the microbe is pathogenic, non-pathogenic, or commensal. The integrated study of microbes and their interactions with each other, their host, and the cellular environment they inhabit is a unifying theme of the journal. The published work in Cell Host & Microbe is expected to be of exceptional significance within its field and also of interest to researchers in other areas. In addition to primary research articles, the journal features expert analysis, commentary, and reviews on current topics of interest in the field.