{"title":"凸双曲3-流形边界上的诱导度量和弯曲层合","authors":"Abderrahim Mesbah","doi":"10.1112/topo.70031","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> be an oriented closed surface of genus at least two, and let <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>=</mo>\n <mi>S</mi>\n <mo>×</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$M = S \\times (0,1)$</annotation>\n </semantics></math>. Suppose that <span></span><math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math> is a Riemannian metric on <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> with curvature strictly greater than <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$-1$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <msup>\n <mi>h</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$h^{*}$</annotation>\n </semantics></math> is a Riemannian metric on <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> with curvature strictly less than 1, and every contractible closed geodesic with respect to <span></span><math>\n <semantics>\n <msup>\n <mi>h</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$h^{*}$</annotation>\n </semantics></math> has length strictly greater than <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>π</mi>\n </mrow>\n <annotation>$2\\pi$</annotation>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math> be a measured lamination on <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> such that every closed leaf has weight strictly less than <span></span><math>\n <semantics>\n <mi>π</mi>\n <annotation>$\\pi$</annotation>\n </semantics></math>. Then, we prove the existence of a convex hyperbolic metric <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> on the interior of <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> that induces the Riemannian metric <span></span><math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math> (respectively, <span></span><math>\n <semantics>\n <msup>\n <mi>h</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$h^{*}$</annotation>\n </semantics></math>) as the first (respectively, third) fundamental form on <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>×</mo>\n <mfenced>\n <mn>0</mn>\n </mfenced>\n </mrow>\n <annotation>$S \\times \\left\\lbrace 0\\right\\rbrace$</annotation>\n </semantics></math> and induces a pleated surface structure on <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>×</mo>\n <mfenced>\n <mn>1</mn>\n </mfenced>\n </mrow>\n <annotation>$S \\times \\left\\lbrace 1\\right\\rbrace$</annotation>\n </semantics></math> with bending lamination <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math>. This statement remains valid even in limiting cases where the curvature of <span></span><math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math> is constant and equal to <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$-1$</annotation>\n </semantics></math>. In addition, when considering a conformal class <span></span><math>\n <semantics>\n <mi>c</mi>\n <annotation>$c$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>, we show that there exists a convex hyperbolic metric <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> on the interior of <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> that induces <span></span><math>\n <semantics>\n <mi>c</mi>\n <annotation>$c$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>×</mo>\n <mfenced>\n <mn>0</mn>\n </mfenced>\n </mrow>\n <annotation>$S \\times \\left\\lbrace 0\\right\\rbrace$</annotation>\n </semantics></math>, which is viewed as one component of the ideal boundary at infinity of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>,</mo>\n <mi>g</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(M,g)$</annotation>\n </semantics></math>, and induces a pleated surface structure on <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>×</mo>\n <mfenced>\n <mn>1</mn>\n </mfenced>\n </mrow>\n <annotation>$S \\times \\left\\lbrace 1\\right\\rbrace$</annotation>\n </semantics></math> with bending lamination <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math>. Our proof differs from previous work by Lecuire for these two last cases. Moreover, when we consider a lamination which is small enough, in a sense that we will define, and a hyperbolic metric, we show that the metric on the interior of M that realizes these data is unique.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The induced metric and bending lamination on the boundary of convex hyperbolic 3-manifolds\",\"authors\":\"Abderrahim Mesbah\",\"doi\":\"10.1112/topo.70031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> be an oriented closed surface of genus at least two, and let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n <mo>=</mo>\\n <mi>S</mi>\\n <mo>×</mo>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$M = S \\\\times (0,1)$</annotation>\\n </semantics></math>. Suppose that <span></span><math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math> is a Riemannian metric on <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> with curvature strictly greater than <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$-1$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <msup>\\n <mi>h</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>$h^{*}$</annotation>\\n </semantics></math> is a Riemannian metric on <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> with curvature strictly less than 1, and every contractible closed geodesic with respect to <span></span><math>\\n <semantics>\\n <msup>\\n <mi>h</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>$h^{*}$</annotation>\\n </semantics></math> has length strictly greater than <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mi>π</mi>\\n </mrow>\\n <annotation>$2\\\\pi$</annotation>\\n </semantics></math>. Let <span></span><math>\\n <semantics>\\n <mi>μ</mi>\\n <annotation>$\\\\mu$</annotation>\\n </semantics></math> be a measured lamination on <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> such that every closed leaf has weight strictly less than <span></span><math>\\n <semantics>\\n <mi>π</mi>\\n <annotation>$\\\\pi$</annotation>\\n </semantics></math>. Then, we prove the existence of a convex hyperbolic metric <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> on the interior of <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> that induces the Riemannian metric <span></span><math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math> (respectively, <span></span><math>\\n <semantics>\\n <msup>\\n <mi>h</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>$h^{*}$</annotation>\\n </semantics></math>) as the first (respectively, third) fundamental form on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mo>×</mo>\\n <mfenced>\\n <mn>0</mn>\\n </mfenced>\\n </mrow>\\n <annotation>$S \\\\times \\\\left\\\\lbrace 0\\\\right\\\\rbrace$</annotation>\\n </semantics></math> and induces a pleated surface structure on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mo>×</mo>\\n <mfenced>\\n <mn>1</mn>\\n </mfenced>\\n </mrow>\\n <annotation>$S \\\\times \\\\left\\\\lbrace 1\\\\right\\\\rbrace$</annotation>\\n </semantics></math> with bending lamination <span></span><math>\\n <semantics>\\n <mi>μ</mi>\\n <annotation>$\\\\mu$</annotation>\\n </semantics></math>. This statement remains valid even in limiting cases where the curvature of <span></span><math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math> is constant and equal to <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$-1$</annotation>\\n </semantics></math>. In addition, when considering a conformal class <span></span><math>\\n <semantics>\\n <mi>c</mi>\\n <annotation>$c$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math>, we show that there exists a convex hyperbolic metric <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> on the interior of <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> that induces <span></span><math>\\n <semantics>\\n <mi>c</mi>\\n <annotation>$c$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mo>×</mo>\\n <mfenced>\\n <mn>0</mn>\\n </mfenced>\\n </mrow>\\n <annotation>$S \\\\times \\\\left\\\\lbrace 0\\\\right\\\\rbrace$</annotation>\\n </semantics></math>, which is viewed as one component of the ideal boundary at infinity of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>M</mi>\\n <mo>,</mo>\\n <mi>g</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(M,g)$</annotation>\\n </semantics></math>, and induces a pleated surface structure on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mo>×</mo>\\n <mfenced>\\n <mn>1</mn>\\n </mfenced>\\n </mrow>\\n <annotation>$S \\\\times \\\\left\\\\lbrace 1\\\\right\\\\rbrace$</annotation>\\n </semantics></math> with bending lamination <span></span><math>\\n <semantics>\\n <mi>μ</mi>\\n <annotation>$\\\\mu$</annotation>\\n </semantics></math>. Our proof differs from previous work by Lecuire for these two last cases. Moreover, when we consider a lamination which is small enough, in a sense that we will define, and a hyperbolic metric, we show that the metric on the interior of M that realizes these data is unique.</p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/topo.70031\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/topo.70031","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The induced metric and bending lamination on the boundary of convex hyperbolic 3-manifolds
Let be an oriented closed surface of genus at least two, and let . Suppose that is a Riemannian metric on with curvature strictly greater than , is a Riemannian metric on with curvature strictly less than 1, and every contractible closed geodesic with respect to has length strictly greater than . Let be a measured lamination on such that every closed leaf has weight strictly less than . Then, we prove the existence of a convex hyperbolic metric on the interior of that induces the Riemannian metric (respectively, ) as the first (respectively, third) fundamental form on and induces a pleated surface structure on with bending lamination . This statement remains valid even in limiting cases where the curvature of is constant and equal to . In addition, when considering a conformal class on , we show that there exists a convex hyperbolic metric on the interior of that induces on , which is viewed as one component of the ideal boundary at infinity of , and induces a pleated surface structure on with bending lamination . Our proof differs from previous work by Lecuire for these two last cases. Moreover, when we consider a lamination which is small enough, in a sense that we will define, and a hyperbolic metric, we show that the metric on the interior of M that realizes these data is unique.
期刊介绍:
The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal.
The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.