凸双曲3-流形边界上的诱导度量和弯曲层合

IF 1.1 2区 数学 Q2 MATHEMATICS
Abderrahim Mesbah
{"title":"凸双曲3-流形边界上的诱导度量和弯曲层合","authors":"Abderrahim Mesbah","doi":"10.1112/topo.70031","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> be an oriented closed surface of genus at least two, and let <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>=</mo>\n <mi>S</mi>\n <mo>×</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$M = S \\times (0,1)$</annotation>\n </semantics></math>. Suppose that <span></span><math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math> is a Riemannian metric on <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> with curvature strictly greater than <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$-1$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <msup>\n <mi>h</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$h^{*}$</annotation>\n </semantics></math> is a Riemannian metric on <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> with curvature strictly less than 1, and every contractible closed geodesic with respect to <span></span><math>\n <semantics>\n <msup>\n <mi>h</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$h^{*}$</annotation>\n </semantics></math> has length strictly greater than <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mi>π</mi>\n </mrow>\n <annotation>$2\\pi$</annotation>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math> be a measured lamination on <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> such that every closed leaf has weight strictly less than <span></span><math>\n <semantics>\n <mi>π</mi>\n <annotation>$\\pi$</annotation>\n </semantics></math>. Then, we prove the existence of a convex hyperbolic metric <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> on the interior of <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> that induces the Riemannian metric <span></span><math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math> (respectively, <span></span><math>\n <semantics>\n <msup>\n <mi>h</mi>\n <mo>∗</mo>\n </msup>\n <annotation>$h^{*}$</annotation>\n </semantics></math>) as the first (respectively, third) fundamental form on <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>×</mo>\n <mfenced>\n <mn>0</mn>\n </mfenced>\n </mrow>\n <annotation>$S \\times \\left\\lbrace 0\\right\\rbrace$</annotation>\n </semantics></math> and induces a pleated surface structure on <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>×</mo>\n <mfenced>\n <mn>1</mn>\n </mfenced>\n </mrow>\n <annotation>$S \\times \\left\\lbrace 1\\right\\rbrace$</annotation>\n </semantics></math> with bending lamination <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math>. This statement remains valid even in limiting cases where the curvature of <span></span><math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math> is constant and equal to <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$-1$</annotation>\n </semantics></math>. In addition, when considering a conformal class <span></span><math>\n <semantics>\n <mi>c</mi>\n <annotation>$c$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>, we show that there exists a convex hyperbolic metric <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> on the interior of <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> that induces <span></span><math>\n <semantics>\n <mi>c</mi>\n <annotation>$c$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>×</mo>\n <mfenced>\n <mn>0</mn>\n </mfenced>\n </mrow>\n <annotation>$S \\times \\left\\lbrace 0\\right\\rbrace$</annotation>\n </semantics></math>, which is viewed as one component of the ideal boundary at infinity of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>,</mo>\n <mi>g</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(M,g)$</annotation>\n </semantics></math>, and induces a pleated surface structure on <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>×</mo>\n <mfenced>\n <mn>1</mn>\n </mfenced>\n </mrow>\n <annotation>$S \\times \\left\\lbrace 1\\right\\rbrace$</annotation>\n </semantics></math> with bending lamination <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math>. Our proof differs from previous work by Lecuire for these two last cases. Moreover, when we consider a lamination which is small enough, in a sense that we will define, and a hyperbolic metric, we show that the metric on the interior of M that realizes these data is unique.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The induced metric and bending lamination on the boundary of convex hyperbolic 3-manifolds\",\"authors\":\"Abderrahim Mesbah\",\"doi\":\"10.1112/topo.70031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> be an oriented closed surface of genus at least two, and let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n <mo>=</mo>\\n <mi>S</mi>\\n <mo>×</mo>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$M = S \\\\times (0,1)$</annotation>\\n </semantics></math>. Suppose that <span></span><math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math> is a Riemannian metric on <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> with curvature strictly greater than <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$-1$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <msup>\\n <mi>h</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>$h^{*}$</annotation>\\n </semantics></math> is a Riemannian metric on <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> with curvature strictly less than 1, and every contractible closed geodesic with respect to <span></span><math>\\n <semantics>\\n <msup>\\n <mi>h</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>$h^{*}$</annotation>\\n </semantics></math> has length strictly greater than <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mi>π</mi>\\n </mrow>\\n <annotation>$2\\\\pi$</annotation>\\n </semantics></math>. Let <span></span><math>\\n <semantics>\\n <mi>μ</mi>\\n <annotation>$\\\\mu$</annotation>\\n </semantics></math> be a measured lamination on <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> such that every closed leaf has weight strictly less than <span></span><math>\\n <semantics>\\n <mi>π</mi>\\n <annotation>$\\\\pi$</annotation>\\n </semantics></math>. Then, we prove the existence of a convex hyperbolic metric <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> on the interior of <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> that induces the Riemannian metric <span></span><math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math> (respectively, <span></span><math>\\n <semantics>\\n <msup>\\n <mi>h</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>$h^{*}$</annotation>\\n </semantics></math>) as the first (respectively, third) fundamental form on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mo>×</mo>\\n <mfenced>\\n <mn>0</mn>\\n </mfenced>\\n </mrow>\\n <annotation>$S \\\\times \\\\left\\\\lbrace 0\\\\right\\\\rbrace$</annotation>\\n </semantics></math> and induces a pleated surface structure on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mo>×</mo>\\n <mfenced>\\n <mn>1</mn>\\n </mfenced>\\n </mrow>\\n <annotation>$S \\\\times \\\\left\\\\lbrace 1\\\\right\\\\rbrace$</annotation>\\n </semantics></math> with bending lamination <span></span><math>\\n <semantics>\\n <mi>μ</mi>\\n <annotation>$\\\\mu$</annotation>\\n </semantics></math>. This statement remains valid even in limiting cases where the curvature of <span></span><math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math> is constant and equal to <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$-1$</annotation>\\n </semantics></math>. In addition, when considering a conformal class <span></span><math>\\n <semantics>\\n <mi>c</mi>\\n <annotation>$c$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math>, we show that there exists a convex hyperbolic metric <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> on the interior of <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> that induces <span></span><math>\\n <semantics>\\n <mi>c</mi>\\n <annotation>$c$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mo>×</mo>\\n <mfenced>\\n <mn>0</mn>\\n </mfenced>\\n </mrow>\\n <annotation>$S \\\\times \\\\left\\\\lbrace 0\\\\right\\\\rbrace$</annotation>\\n </semantics></math>, which is viewed as one component of the ideal boundary at infinity of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>M</mi>\\n <mo>,</mo>\\n <mi>g</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(M,g)$</annotation>\\n </semantics></math>, and induces a pleated surface structure on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mo>×</mo>\\n <mfenced>\\n <mn>1</mn>\\n </mfenced>\\n </mrow>\\n <annotation>$S \\\\times \\\\left\\\\lbrace 1\\\\right\\\\rbrace$</annotation>\\n </semantics></math> with bending lamination <span></span><math>\\n <semantics>\\n <mi>μ</mi>\\n <annotation>$\\\\mu$</annotation>\\n </semantics></math>. Our proof differs from previous work by Lecuire for these two last cases. Moreover, when we consider a lamination which is small enough, in a sense that we will define, and a hyperbolic metric, we show that the metric on the interior of M that realizes these data is unique.</p>\",\"PeriodicalId\":56114,\"journal\":{\"name\":\"Journal of Topology\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/topo.70031\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/topo.70031","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设S $S$为至少两个属的有向封闭曲面,设M = S × (0,1) $M = S \times (0,1)$。假设h $h$是S $S$上的黎曼度规曲率严格大于- 1 $-1$,h * $h^{*}$是S $S$上曲率严格小于1的黎曼度规,并且每一条关于h * $h^{*}$的可收缩封闭测地线的长度都严格大于2 π $2\pi$。设μ $\mu$为S $S$上的测量层压,使得每个闭合叶片的质量严格小于π $\pi$。然后,我们证明了在M $M$的内部存在一个凸双曲度规g $g$,它分别推导出黎曼度规h $h$ (H * $h^{*}$)作为第一个(分别,第三,在S × 0 $S \times \left\lbrace 0\right\rbrace$上形成基本结构,并在S × 1 $S \times \left\lbrace 1\right\rbrace$上形成弯曲层合μ的褶皱表面结构$\mu$。即使在曲率h $h$为常数且等于- 1 $-1$的极限情况下,这个表述仍然有效。此外,当考虑S $S$上的保角c类$c$时,我们证明在M $M$的内部存在一个凸双曲度规g $g$,它在S × 0 $S \times \left\lbrace 0\right\rbrace$上推导出c $c$,它被看作(M, g) $(M,g)$在无穷远处的理想边界的一个分量,并在S × 1 $S \times \left\lbrace 1\right\rbrace$上通过弯曲层压μ $\mu$诱导出褶皱表面结构。对于后两种情况,我们的证明不同于Lecuire之前的工作。此外,当我们考虑一个足够小的层压,在某种意义上,我们将定义,和一个双曲度规,我们证明M内部实现这些数据的度规是唯一的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The induced metric and bending lamination on the boundary of convex hyperbolic 3-manifolds

The induced metric and bending lamination on the boundary of convex hyperbolic 3-manifolds

The induced metric and bending lamination on the boundary of convex hyperbolic 3-manifolds

The induced metric and bending lamination on the boundary of convex hyperbolic 3-manifolds

Let S $S$ be an oriented closed surface of genus at least two, and let M = S × ( 0 , 1 ) $M = S \times (0,1)$ . Suppose that h $h$ is a Riemannian metric on S $S$ with curvature strictly greater than 1 $-1$ , h $h^{*}$ is a Riemannian metric on S $S$ with curvature strictly less than 1, and every contractible closed geodesic with respect to h $h^{*}$ has length strictly greater than 2 π $2\pi$ . Let μ $\mu$ be a measured lamination on S $S$ such that every closed leaf has weight strictly less than π $\pi$ . Then, we prove the existence of a convex hyperbolic metric g $g$ on the interior of M $M$ that induces the Riemannian metric h $h$ (respectively, h $h^{*}$ ) as the first (respectively, third) fundamental form on S × 0 $S \times \left\lbrace 0\right\rbrace$ and induces a pleated surface structure on S × 1 $S \times \left\lbrace 1\right\rbrace$ with bending lamination μ $\mu$ . This statement remains valid even in limiting cases where the curvature of h $h$ is constant and equal to 1 $-1$ . In addition, when considering a conformal class c $c$ on S $S$ , we show that there exists a convex hyperbolic metric g $g$ on the interior of M $M$ that induces c $c$ on S × 0 $S \times \left\lbrace 0\right\rbrace$ , which is viewed as one component of the ideal boundary at infinity of ( M , g ) $(M,g)$ , and induces a pleated surface structure on S × 1 $S \times \left\lbrace 1\right\rbrace$ with bending lamination μ $\mu$ . Our proof differs from previous work by Lecuire for these two last cases. Moreover, when we consider a lamination which is small enough, in a sense that we will define, and a hyperbolic metric, we show that the metric on the interior of M that realizes these data is unique.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信