建立农田磷利用效率空间显式监测系统

IF 3.6 4区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Kabindra Adhikari, Douglas R. Smith, Chad Hajda
{"title":"建立农田磷利用效率空间显式监测系统","authors":"Kabindra Adhikari,&nbsp;Douglas R. Smith,&nbsp;Chad Hajda","doi":"10.1002/ael2.70032","DOIUrl":null,"url":null,"abstract":"<p>We evaluated a geospatially explicit phosphorus (P) use efficiency (PUE) monitoring method in crop fields using proximal sensing, field observations, and machine learning. Corn (<i>Zea mays</i> L.) yield and grain protein content were measured using an Ag Leader yield monitor and a CropScan sensor near Riesel, Texas. Topsoil P (0–15 cm) and grain P levels were analyzed for samples collected at strategic field locations. A random forest model was trained to predict PUE using soil electrical conductivity (EC<sub>a</sub>) from a Veris instrument and topographic variables as predictors (<i>R</i><sup>2</sup> = 0.78, root mean squared error = 0.01). CropScan sensor effectively estimated grain P content, supporting field-wide PUE upscaling. EC<sub>a</sub> and elevation were the primary drivers of PUE variation. The resulting maps are valuable for monitoring PUE in crop fields and guiding variable-rate fertilizer applications. This scalable approach provides a robust framework for monitoring nutrient dynamics and efficiency, informing precision management strategies to enhance yield and sustainability in crop production systems.</p>","PeriodicalId":48502,"journal":{"name":"Agricultural & Environmental Letters","volume":"10 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://acsess.onlinelibrary.wiley.com/doi/epdf/10.1002/ael2.70032","citationCount":"0","resultStr":"{\"title\":\"Establishing a spatially explicit monitoring system for phosphorus use efficiency for crop fields\",\"authors\":\"Kabindra Adhikari,&nbsp;Douglas R. Smith,&nbsp;Chad Hajda\",\"doi\":\"10.1002/ael2.70032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We evaluated a geospatially explicit phosphorus (P) use efficiency (PUE) monitoring method in crop fields using proximal sensing, field observations, and machine learning. Corn (<i>Zea mays</i> L.) yield and grain protein content were measured using an Ag Leader yield monitor and a CropScan sensor near Riesel, Texas. Topsoil P (0–15 cm) and grain P levels were analyzed for samples collected at strategic field locations. A random forest model was trained to predict PUE using soil electrical conductivity (EC<sub>a</sub>) from a Veris instrument and topographic variables as predictors (<i>R</i><sup>2</sup> = 0.78, root mean squared error = 0.01). CropScan sensor effectively estimated grain P content, supporting field-wide PUE upscaling. EC<sub>a</sub> and elevation were the primary drivers of PUE variation. The resulting maps are valuable for monitoring PUE in crop fields and guiding variable-rate fertilizer applications. This scalable approach provides a robust framework for monitoring nutrient dynamics and efficiency, informing precision management strategies to enhance yield and sustainability in crop production systems.</p>\",\"PeriodicalId\":48502,\"journal\":{\"name\":\"Agricultural & Environmental Letters\",\"volume\":\"10 2\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://acsess.onlinelibrary.wiley.com/doi/epdf/10.1002/ael2.70032\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural & Environmental Letters\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://acsess.onlinelibrary.wiley.com/doi/10.1002/ael2.70032\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural & Environmental Letters","FirstCategoryId":"97","ListUrlMain":"https://acsess.onlinelibrary.wiley.com/doi/10.1002/ael2.70032","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们利用近端传感、现场观测和机器学习技术,评估了一种地理空间明确的作物田磷(P)利用效率(PUE)监测方法。在德克萨斯州Riesel附近,使用Ag Leader产量监测器和CropScan传感器测量了玉米(Zea mays L.)的产量和籽粒蛋白质含量。分析了在农田战略位置采集的样品的表层土壤磷(0-15 cm)和粮食磷水平。利用Veris仪器的土壤电导率(ECa)和地形变量作为预测因子,训练随机森林模型预测PUE (R2 = 0.78,均方根误差= 0.01)。CropScan传感器可有效估算籽粒磷含量,支持全田PUE升级。ECa和海拔升高是PUE变化的主要驱动因素。所得到的地图对于监测作物田间PUE和指导可变速率施肥具有重要价值。这种可扩展的方法为监测养分动态和效率提供了一个强大的框架,为精确管理战略提供信息,以提高作物生产系统的产量和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Establishing a spatially explicit monitoring system for phosphorus use efficiency for crop fields

Establishing a spatially explicit monitoring system for phosphorus use efficiency for crop fields

Establishing a spatially explicit monitoring system for phosphorus use efficiency for crop fields

Establishing a spatially explicit monitoring system for phosphorus use efficiency for crop fields

Establishing a spatially explicit monitoring system for phosphorus use efficiency for crop fields

We evaluated a geospatially explicit phosphorus (P) use efficiency (PUE) monitoring method in crop fields using proximal sensing, field observations, and machine learning. Corn (Zea mays L.) yield and grain protein content were measured using an Ag Leader yield monitor and a CropScan sensor near Riesel, Texas. Topsoil P (0–15 cm) and grain P levels were analyzed for samples collected at strategic field locations. A random forest model was trained to predict PUE using soil electrical conductivity (ECa) from a Veris instrument and topographic variables as predictors (R2 = 0.78, root mean squared error = 0.01). CropScan sensor effectively estimated grain P content, supporting field-wide PUE upscaling. ECa and elevation were the primary drivers of PUE variation. The resulting maps are valuable for monitoring PUE in crop fields and guiding variable-rate fertilizer applications. This scalable approach provides a robust framework for monitoring nutrient dynamics and efficiency, informing precision management strategies to enhance yield and sustainability in crop production systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
3.80%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信