固态锂金属电池用纳米充电复合聚合物电解质的锂离子动态界面工程

IF 36.3 1区 材料科学 Q1 Engineering
Shanshan Lv, Jingwen Wang, Yuanming Zhai, Yu Chen, Jiarui Yang, Zhiwei Zhu, Rui Peng, Xuewei Fu, Wei Yang, Yu Wang
{"title":"固态锂金属电池用纳米充电复合聚合物电解质的锂离子动态界面工程","authors":"Shanshan Lv,&nbsp;Jingwen Wang,&nbsp;Yuanming Zhai,&nbsp;Yu Chen,&nbsp;Jiarui Yang,&nbsp;Zhiwei Zhu,&nbsp;Rui Peng,&nbsp;Xuewei Fu,&nbsp;Wei Yang,&nbsp;Yu Wang","doi":"10.1007/s40820-025-01899-7","DOIUrl":null,"url":null,"abstract":"<div><p>Composite polymer electrolytes (CPEs) offer a promising solution for all-solid-state lithium-metal batteries (ASSLMBs). However, conventional nanofillers with Lewis-acid–base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously. Here, by regulating the surface charge characteristics of halloysite nanotube (HNT), we propose a concept of lithium-ion dynamic interface (Li<sup>+</sup>-DI) engineering in nano-charged CPE (NCCPE). Results show that the surface charge characteristics of HNTs fundamentally change the Li<sup>+</sup>-DI, and thereof the mechanical and ion-conduction behaviors of the NCCPEs. Particularly, the HNTs with positively charged surface (HNTs<sup>+</sup>) lead to a higher Li<sup>+</sup> transference number (0.86) than that of HNTs<sup>−</sup> (0.73), but a lower toughness (102.13 MJ m<sup>−3</sup> for HNTs<sup>+</sup> and 159.69 MJ m<sup>−3</sup> for HNTs<sup>−</sup>). Meanwhile, a strong interface compatibilization effect by Li<sup>+</sup> is observed for especially the HNTs<sup>+</sup>-involved Li<sup>+</sup>-DI, which improves the toughness by 2000% compared with the control. Moreover, HNTs<sup>+</sup> are more effective to weaken the Li<sup>+</sup>-solvation strength and facilitate the formation of LiF-rich solid–electrolyte interphase of Li metal compared to HNTs<sup>−</sup>. The resultant Li|NCCPE|LiFePO<sub>4</sub> cell delivers a capacity of 144.9 mAh g<sup>−1</sup> after 400 cycles at 0.5 C and a capacity retention of 78.6%. This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"18 1","pages":""},"PeriodicalIF":36.3000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01899-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Lithium-Ion Dynamic Interface Engineering of Nano-Charged Composite Polymer Electrolytes for Solid-State Lithium-Metal Batteries\",\"authors\":\"Shanshan Lv,&nbsp;Jingwen Wang,&nbsp;Yuanming Zhai,&nbsp;Yu Chen,&nbsp;Jiarui Yang,&nbsp;Zhiwei Zhu,&nbsp;Rui Peng,&nbsp;Xuewei Fu,&nbsp;Wei Yang,&nbsp;Yu Wang\",\"doi\":\"10.1007/s40820-025-01899-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Composite polymer electrolytes (CPEs) offer a promising solution for all-solid-state lithium-metal batteries (ASSLMBs). However, conventional nanofillers with Lewis-acid–base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously. Here, by regulating the surface charge characteristics of halloysite nanotube (HNT), we propose a concept of lithium-ion dynamic interface (Li<sup>+</sup>-DI) engineering in nano-charged CPE (NCCPE). Results show that the surface charge characteristics of HNTs fundamentally change the Li<sup>+</sup>-DI, and thereof the mechanical and ion-conduction behaviors of the NCCPEs. Particularly, the HNTs with positively charged surface (HNTs<sup>+</sup>) lead to a higher Li<sup>+</sup> transference number (0.86) than that of HNTs<sup>−</sup> (0.73), but a lower toughness (102.13 MJ m<sup>−3</sup> for HNTs<sup>+</sup> and 159.69 MJ m<sup>−3</sup> for HNTs<sup>−</sup>). Meanwhile, a strong interface compatibilization effect by Li<sup>+</sup> is observed for especially the HNTs<sup>+</sup>-involved Li<sup>+</sup>-DI, which improves the toughness by 2000% compared with the control. Moreover, HNTs<sup>+</sup> are more effective to weaken the Li<sup>+</sup>-solvation strength and facilitate the formation of LiF-rich solid–electrolyte interphase of Li metal compared to HNTs<sup>−</sup>. The resultant Li|NCCPE|LiFePO<sub>4</sub> cell delivers a capacity of 144.9 mAh g<sup>−1</sup> after 400 cycles at 0.5 C and a capacity retention of 78.6%. This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":36.3000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01899-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01899-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01899-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

复合聚合物电解质(cpe)为全固态锂金属电池(asslmb)提供了一种很有前途的解决方案。然而,传统的具有lewis酸碱表面的纳米填料对提高cpe的整体性能的贡献有限,因为它们难以同时实现强大的电化学和机械界面。本文通过调控高岭土纳米管(HNT)的表面电荷特性,提出了锂离子动态界面(Li+-DI)工程在纳米充电CPE (NCCPE)中的概念。结果表明,HNTs的表面电荷特性从根本上改变了Li+-DI,从而改变了nccpe的力学行为和离子传导行为。特别是,表面带正电荷的HNTs (HNTs+)的Li+转移数(0.86)高于HNTs−(0.73),但韧性较低(HNTs+为102.13 MJ m−3,HNTs−为159.69 MJ m−3)。同时,Li+对含HNTs+的Li+-DI具有较强的界面增容作用,其韧性比对照提高了2000%。此外,与HNTs−相比,HNTs+更有效地削弱Li+的溶剂化强度,促进Li金属的富lif固体电解质界面的形成。得到的Li|NCCPE|LiFePO4电池在0.5 C下循环400次后的容量为144.9 mAh g−1,容量保持率为78.6%。这项研究为理解纳米填料的表面电荷在调节asslmb的机械和电化学界面中的作用提供了深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lithium-Ion Dynamic Interface Engineering of Nano-Charged Composite Polymer Electrolytes for Solid-State Lithium-Metal Batteries

Composite polymer electrolytes (CPEs) offer a promising solution for all-solid-state lithium-metal batteries (ASSLMBs). However, conventional nanofillers with Lewis-acid–base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously. Here, by regulating the surface charge characteristics of halloysite nanotube (HNT), we propose a concept of lithium-ion dynamic interface (Li+-DI) engineering in nano-charged CPE (NCCPE). Results show that the surface charge characteristics of HNTs fundamentally change the Li+-DI, and thereof the mechanical and ion-conduction behaviors of the NCCPEs. Particularly, the HNTs with positively charged surface (HNTs+) lead to a higher Li+ transference number (0.86) than that of HNTs (0.73), but a lower toughness (102.13 MJ m−3 for HNTs+ and 159.69 MJ m−3 for HNTs). Meanwhile, a strong interface compatibilization effect by Li+ is observed for especially the HNTs+-involved Li+-DI, which improves the toughness by 2000% compared with the control. Moreover, HNTs+ are more effective to weaken the Li+-solvation strength and facilitate the formation of LiF-rich solid–electrolyte interphase of Li metal compared to HNTs. The resultant Li|NCCPE|LiFePO4 cell delivers a capacity of 144.9 mAh g−1 after 400 cycles at 0.5 C and a capacity retention of 78.6%. This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信