基于动态时钟电压缩放的伪连续输出调节高压电荷泵

IF 4.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ziliang Zhou;Min Tan
{"title":"基于动态时钟电压缩放的伪连续输出调节高压电荷泵","authors":"Ziliang Zhou;Min Tan","doi":"10.1109/TCSII.2025.3594876","DOIUrl":null,"url":null,"abstract":"This brief presents a high-voltage charge pump with pseudo-continuous regulation using dynamic clock voltage scaling. We propose a small-signal model of the charge pump to facilitate co-simulation of the linear amplifier and the capacitive switching converter, and it shows good agreement with the time-domain ac simulation results. A novel lead compensation is proposed in the amplifier using current-mirror Miller compensation, which ensures loop stability without a large load capacitor at the charge pump’s output. The proposed regulated charge pump has been implemented in a 65-nm CMOS process, and the chip area is <inline-formula> <tex-math>$280~{\\mu }$ </tex-math></inline-formula>m <inline-formula> <tex-math>${\\times } 300~{\\mu }$ </tex-math></inline-formula>m. Operating at a 2.5-V supply, it maintains < 21 mV ripple voltage at 9.6 V output for different load currents and pumping frequencies. The undershoot for the load transient current of 0 to <inline-formula> <tex-math>$50~{\\mu }$ </tex-math></inline-formula>A with a 160-ns edge time is 58 mV with around <inline-formula> <tex-math>$0.8~{\\mu }$ </tex-math></inline-formula>s recovery time.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 9","pages":"1323-1327"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A High-Voltage Charge Pump With Pseudo-Continuous Output Regulation Using Dynamic Clock Voltage Scaling\",\"authors\":\"Ziliang Zhou;Min Tan\",\"doi\":\"10.1109/TCSII.2025.3594876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This brief presents a high-voltage charge pump with pseudo-continuous regulation using dynamic clock voltage scaling. We propose a small-signal model of the charge pump to facilitate co-simulation of the linear amplifier and the capacitive switching converter, and it shows good agreement with the time-domain ac simulation results. A novel lead compensation is proposed in the amplifier using current-mirror Miller compensation, which ensures loop stability without a large load capacitor at the charge pump’s output. The proposed regulated charge pump has been implemented in a 65-nm CMOS process, and the chip area is <inline-formula> <tex-math>$280~{\\\\mu }$ </tex-math></inline-formula>m <inline-formula> <tex-math>${\\\\times } 300~{\\\\mu }$ </tex-math></inline-formula>m. Operating at a 2.5-V supply, it maintains < 21 mV ripple voltage at 9.6 V output for different load currents and pumping frequencies. The undershoot for the load transient current of 0 to <inline-formula> <tex-math>$50~{\\\\mu }$ </tex-math></inline-formula>A with a 160-ns edge time is 58 mV with around <inline-formula> <tex-math>$0.8~{\\\\mu }$ </tex-math></inline-formula>s recovery time.\",\"PeriodicalId\":13101,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"volume\":\"72 9\",\"pages\":\"1323-1327\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11107229/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11107229/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用动态时钟电压标度实现伪连续调节的高压电荷泵。为了方便线性放大器和电容开关变换器的联合仿真,我们提出了电荷泵的小信号模型,该模型与时域交流仿真结果吻合良好。提出了一种采用电流镜米勒补偿的放大器引线补偿方法,保证了回路的稳定性,而无需在电荷泵输出端使用大的负载电容。所提出的可调电荷泵已在65纳米CMOS工艺中实现,芯片面积为$280~{\mu}$ m ${\times}$ 300~{\mu}$ m。在2.5 V电源下工作,在9.6 V输出时,可在不同负载电流和泵浦频率下保持< 21 mV纹波电压。负载暂态电流为0~ 50~{\mu}$ A,边缘时间为160-ns时,欠冲值为58 mV,恢复时间约为0.8~{\mu}$ s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A High-Voltage Charge Pump With Pseudo-Continuous Output Regulation Using Dynamic Clock Voltage Scaling
This brief presents a high-voltage charge pump with pseudo-continuous regulation using dynamic clock voltage scaling. We propose a small-signal model of the charge pump to facilitate co-simulation of the linear amplifier and the capacitive switching converter, and it shows good agreement with the time-domain ac simulation results. A novel lead compensation is proposed in the amplifier using current-mirror Miller compensation, which ensures loop stability without a large load capacitor at the charge pump’s output. The proposed regulated charge pump has been implemented in a 65-nm CMOS process, and the chip area is $280~{\mu }$ m ${\times } 300~{\mu }$ m. Operating at a 2.5-V supply, it maintains < 21 mV ripple voltage at 9.6 V output for different load currents and pumping frequencies. The undershoot for the load transient current of 0 to $50~{\mu }$ A with a 160-ns edge time is 58 mV with around $0.8~{\mu }$ s recovery time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE Transactions on Circuits and Systems II: Express Briefs 工程技术-工程:电子与电气
CiteScore
7.90
自引率
20.50%
发文量
883
审稿时长
3.0 months
期刊介绍: TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: Circuits: Analog, Digital and Mixed Signal Circuits and Systems Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic Circuits and Systems, Power Electronics and Systems Software for Analog-and-Logic Circuits and Systems Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信