原始线性反馈移位寄存器中整数序列的混沌性质

IF 4.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hyojeong Choi;Gangsan Kim;Hong-Yeop Song;Hongjun Noh
{"title":"原始线性反馈移位寄存器中整数序列的混沌性质","authors":"Hyojeong Choi;Gangsan Kim;Hong-Yeop Song;Hongjun Noh","doi":"10.1109/TCSII.2025.3585913","DOIUrl":null,"url":null,"abstract":"In this brief, we investigate the chaotic characteristics of the integer sequences generated by primitive linear feedback shift registers (LFSRs) by interpreting the internal states as integers. We prove that the discrete Lyapunov exponent (dLE) of the permutations induced by these sequences from an L-stage primitive LFSR approches to the range between <inline-formula> <tex-math>$\\ln (\\sqrt {3})$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\ln (2)$ </tex-math></inline-formula> as L increases indefinitely and hence the dynamic systems satisfy the definition of discrete chaos. Furthermore, the 0–1 test of the sequences yields statistics close to 1, supporting the conclusion that these sequences exhibit chaotic dynamics under both theoretical and empirical evaluations.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 9","pages":"1268-1272"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chaotic Nature of Integer Sequences From Primitive Linear Feedback Shift Registers\",\"authors\":\"Hyojeong Choi;Gangsan Kim;Hong-Yeop Song;Hongjun Noh\",\"doi\":\"10.1109/TCSII.2025.3585913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this brief, we investigate the chaotic characteristics of the integer sequences generated by primitive linear feedback shift registers (LFSRs) by interpreting the internal states as integers. We prove that the discrete Lyapunov exponent (dLE) of the permutations induced by these sequences from an L-stage primitive LFSR approches to the range between <inline-formula> <tex-math>$\\\\ln (\\\\sqrt {3})$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\\\ln (2)$ </tex-math></inline-formula> as L increases indefinitely and hence the dynamic systems satisfy the definition of discrete chaos. Furthermore, the 0–1 test of the sequences yields statistics close to 1, supporting the conclusion that these sequences exhibit chaotic dynamics under both theoretical and empirical evaluations.\",\"PeriodicalId\":13101,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"volume\":\"72 9\",\"pages\":\"1268-1272\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11071980/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11071980/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了由原始线性反馈移位寄存器(LFSRs)产生的整数序列的混沌特性,将其内部状态解释为整数。我们证明了由这些序列引起的排列的离散Lyapunov指数(dLE)在L无限增大时趋近于$\ln (\sqrt {3})$和$\ln (2)$之间的范围,因此动态系统满足离散混沌的定义。此外,序列的0-1检验得到接近1的统计量,支持理论和经验评价下这些序列表现出混沌动力学的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaotic Nature of Integer Sequences From Primitive Linear Feedback Shift Registers
In this brief, we investigate the chaotic characteristics of the integer sequences generated by primitive linear feedback shift registers (LFSRs) by interpreting the internal states as integers. We prove that the discrete Lyapunov exponent (dLE) of the permutations induced by these sequences from an L-stage primitive LFSR approches to the range between $\ln (\sqrt {3})$ and $\ln (2)$ as L increases indefinitely and hence the dynamic systems satisfy the definition of discrete chaos. Furthermore, the 0–1 test of the sequences yields statistics close to 1, supporting the conclusion that these sequences exhibit chaotic dynamics under both theoretical and empirical evaluations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE Transactions on Circuits and Systems II: Express Briefs 工程技术-工程:电子与电气
CiteScore
7.90
自引率
20.50%
发文量
883
审稿时长
3.0 months
期刊介绍: TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: Circuits: Analog, Digital and Mixed Signal Circuits and Systems Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic Circuits and Systems, Power Electronics and Systems Software for Analog-and-Logic Circuits and Systems Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信