一种高度精确的基于紫外线的土壤有机碳测量系统,能够测量环境贡献者和精确叠加预测算法

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Steven Tran;Seungbeom Noh;Carlos H. Mastrangelo;Hanseup Kim
{"title":"一种高度精确的基于紫外线的土壤有机碳测量系统,能够测量环境贡献者和精确叠加预测算法","authors":"Steven Tran;Seungbeom Noh;Carlos H. Mastrangelo;Hanseup Kim","doi":"10.1109/LSENS.2025.3597505","DOIUrl":null,"url":null,"abstract":"This letter presents a UV-induced soil organic carbon (SOC) measurement system enhanced with an ensemble machine learning algorithm for environmental calibration. The system uses a 30-min UV exposure to extract CO<sub>2</sub> via photo-oxidation and integrates temperature and moisture data to correct for environmental variability. A custom ensemble learning model composed of six algorithms processes the data to deliver highly accurate SOC predictions. Field validation of this system demonstrated a prediction accuracy of 93.95% with an R<sup>2</sup> of 0.91, representing a 21.03% improvement over models lacking environmental calibration and underscoring the systems strong potential for real-time, in-situ carbon monitoring.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 9","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Highly Accurate UV-Based Soil Organic Carbon Measurement System Enabled With the Measurement of Environmental Contributors and a Precise Superposition of Prediction Algorithms\",\"authors\":\"Steven Tran;Seungbeom Noh;Carlos H. Mastrangelo;Hanseup Kim\",\"doi\":\"10.1109/LSENS.2025.3597505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a UV-induced soil organic carbon (SOC) measurement system enhanced with an ensemble machine learning algorithm for environmental calibration. The system uses a 30-min UV exposure to extract CO<sub>2</sub> via photo-oxidation and integrates temperature and moisture data to correct for environmental variability. A custom ensemble learning model composed of six algorithms processes the data to deliver highly accurate SOC predictions. Field validation of this system demonstrated a prediction accuracy of 93.95% with an R<sup>2</sup> of 0.91, representing a 21.03% improvement over models lacking environmental calibration and underscoring the systems strong potential for real-time, in-situ carbon monitoring.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 9\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11122294/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11122294/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种紫外线诱导的土壤有机碳(SOC)测量系统,该系统采用集成机器学习算法进行环境校准。该系统使用30分钟的紫外线照射,通过光氧化提取二氧化碳,并集成温度和湿度数据,以纠正环境变化。由六种算法组成的定制集成学习模型处理数据,以提供高度准确的SOC预测。现场验证表明,该系统的预测精度为93.95%,R2为0.91,比缺乏环境校准的模型提高了21.03%,强调了该系统在实时、原位碳监测方面的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Highly Accurate UV-Based Soil Organic Carbon Measurement System Enabled With the Measurement of Environmental Contributors and a Precise Superposition of Prediction Algorithms
This letter presents a UV-induced soil organic carbon (SOC) measurement system enhanced with an ensemble machine learning algorithm for environmental calibration. The system uses a 30-min UV exposure to extract CO2 via photo-oxidation and integrates temperature and moisture data to correct for environmental variability. A custom ensemble learning model composed of six algorithms processes the data to deliver highly accurate SOC predictions. Field validation of this system demonstrated a prediction accuracy of 93.95% with an R2 of 0.91, representing a 21.03% improvement over models lacking environmental calibration and underscoring the systems strong potential for real-time, in-situ carbon monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信