{"title":"基于传统电力系统准则的电流约束voc型GFM逆变器稳定性与再同步研究","authors":"Kazuki Watanabe;Daisuke Iioka","doi":"10.1109/OJPEL.2025.3600176","DOIUrl":null,"url":null,"abstract":"As inverter-based resources and renewable energy systems continue to increase their penetration in modern power grids, maintaining system stability has become a critical challenge. To address this challenge, advanced control strategies are required for grid-forming (GFM) inverters that can operate reliably. This paper proposes a control strategy for grid-forming (GFM) inverters based on Virtual Oscillator Control (VOC), a novel approach grounded in power electronics and nonlinear dynamics. A key contribution of this work is the revisiting and employment of classical power system analysis techniques, such as the Equal Area Criterion (EAC) and synchronization-based stability evaluation, to derive stability criteria for VOC-based grid-forming (GFM) inverters operating under current-limiting conditions. Through detailed time-domain simulations, the validity of the derived stability criteria is systematically verified, demonstrating their applicability to the transient behavior of current-constrained VOC inverters. Furthermore, the current-limiting control logic used in the simulations is validated through Controller Hardware-in-the-Loop (CHIL) testing with actual controller hardware, ensuring its practical feasibility in real-time environments. The findings establish that combining EAC-based classical analysis with VOC control strategies offers an effective and reliable framework for enhancing the resilience and stability of GFM inverters under fault conditions.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"1419-1427"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11129237","citationCount":"0","resultStr":"{\"title\":\"Stability and Resynchronization of Current-Constrained VOC-Based GFM Inverters Through Revisiting Traditional Power System Criteria\",\"authors\":\"Kazuki Watanabe;Daisuke Iioka\",\"doi\":\"10.1109/OJPEL.2025.3600176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As inverter-based resources and renewable energy systems continue to increase their penetration in modern power grids, maintaining system stability has become a critical challenge. To address this challenge, advanced control strategies are required for grid-forming (GFM) inverters that can operate reliably. This paper proposes a control strategy for grid-forming (GFM) inverters based on Virtual Oscillator Control (VOC), a novel approach grounded in power electronics and nonlinear dynamics. A key contribution of this work is the revisiting and employment of classical power system analysis techniques, such as the Equal Area Criterion (EAC) and synchronization-based stability evaluation, to derive stability criteria for VOC-based grid-forming (GFM) inverters operating under current-limiting conditions. Through detailed time-domain simulations, the validity of the derived stability criteria is systematically verified, demonstrating their applicability to the transient behavior of current-constrained VOC inverters. Furthermore, the current-limiting control logic used in the simulations is validated through Controller Hardware-in-the-Loop (CHIL) testing with actual controller hardware, ensuring its practical feasibility in real-time environments. The findings establish that combining EAC-based classical analysis with VOC control strategies offers an effective and reliable framework for enhancing the resilience and stability of GFM inverters under fault conditions.\",\"PeriodicalId\":93182,\"journal\":{\"name\":\"IEEE open journal of power electronics\",\"volume\":\"6 \",\"pages\":\"1419-1427\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11129237\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of power electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11129237/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11129237/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Stability and Resynchronization of Current-Constrained VOC-Based GFM Inverters Through Revisiting Traditional Power System Criteria
As inverter-based resources and renewable energy systems continue to increase their penetration in modern power grids, maintaining system stability has become a critical challenge. To address this challenge, advanced control strategies are required for grid-forming (GFM) inverters that can operate reliably. This paper proposes a control strategy for grid-forming (GFM) inverters based on Virtual Oscillator Control (VOC), a novel approach grounded in power electronics and nonlinear dynamics. A key contribution of this work is the revisiting and employment of classical power system analysis techniques, such as the Equal Area Criterion (EAC) and synchronization-based stability evaluation, to derive stability criteria for VOC-based grid-forming (GFM) inverters operating under current-limiting conditions. Through detailed time-domain simulations, the validity of the derived stability criteria is systematically verified, demonstrating their applicability to the transient behavior of current-constrained VOC inverters. Furthermore, the current-limiting control logic used in the simulations is validated through Controller Hardware-in-the-Loop (CHIL) testing with actual controller hardware, ensuring its practical feasibility in real-time environments. The findings establish that combining EAC-based classical analysis with VOC control strategies offers an effective and reliable framework for enhancing the resilience and stability of GFM inverters under fault conditions.