模糊逻辑控制在双曲型微分方程中的应用

Q1 Mathematics
Ruchika Lochab , Luckshay Batra
{"title":"模糊逻辑控制在双曲型微分方程中的应用","authors":"Ruchika Lochab ,&nbsp;Luckshay Batra","doi":"10.1016/j.padiff.2025.101278","DOIUrl":null,"url":null,"abstract":"<div><div>The selection of suitable fuzzy logic control (FLC) systems for stabilizing hyperbolic conservation laws (HCLs) remains an open issue in computational fluid dynamics (CFD), particularly for shock-capturing schemes. This work addresses this gap by adopting a dual methodological strategy: (i) a systematic review of over 50 studies (2000–2025) on flux-limiting FLC approaches, and (ii) a comparative benchmark of Mamdani- and Sugeno-type FLCs applied to discontinuous solutions of HCLs. Our results demonstrate that, using weighted average defuzzification, Sugeno-type systems achieve approximately a 20% reduction in mean square error compared to the Mamdani centroid-based method in shock-dominated regimes. This performance gain aligns with adaptive CFD practices that prioritize rule-based, computationally inexpensive smoothing. By integrating theoretical analysis with experimental validation, this work strengthens the mathematical foundations of fuzzy control in PDE-driven modelling.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101278"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of fuzzy logic controls on hyperbolic differential equations\",\"authors\":\"Ruchika Lochab ,&nbsp;Luckshay Batra\",\"doi\":\"10.1016/j.padiff.2025.101278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The selection of suitable fuzzy logic control (FLC) systems for stabilizing hyperbolic conservation laws (HCLs) remains an open issue in computational fluid dynamics (CFD), particularly for shock-capturing schemes. This work addresses this gap by adopting a dual methodological strategy: (i) a systematic review of over 50 studies (2000–2025) on flux-limiting FLC approaches, and (ii) a comparative benchmark of Mamdani- and Sugeno-type FLCs applied to discontinuous solutions of HCLs. Our results demonstrate that, using weighted average defuzzification, Sugeno-type systems achieve approximately a 20% reduction in mean square error compared to the Mamdani centroid-based method in shock-dominated regimes. This performance gain aligns with adaptive CFD practices that prioritize rule-based, computationally inexpensive smoothing. By integrating theoretical analysis with experimental validation, this work strengthens the mathematical foundations of fuzzy control in PDE-driven modelling.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"15 \",\"pages\":\"Article 101278\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125002050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125002050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在计算流体动力学(CFD)中,选择合适的模糊逻辑控制系统来稳定双曲守恒律(hcl)仍然是一个悬而未决的问题,特别是对于冲击捕获方案。这项工作通过采用双重方法策略来解决这一差距:(i)系统回顾了50多项关于通量限制FLC方法的研究(2000-2025),以及(ii) Mamdani型和sugeno型FLC应用于hcl不连续溶液的比较基准。我们的研究结果表明,与基于Mamdani质心的方法相比,使用加权平均去模糊化,sugeno型系统在冲击主导下的均方误差降低了约20%。这种性能增益与自适应CFD实践相一致,这些实践优先考虑基于规则的、计算成本低廉的平滑。通过理论分析和实验验证相结合,加强了pde驱动建模中模糊控制的数学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of fuzzy logic controls on hyperbolic differential equations
The selection of suitable fuzzy logic control (FLC) systems for stabilizing hyperbolic conservation laws (HCLs) remains an open issue in computational fluid dynamics (CFD), particularly for shock-capturing schemes. This work addresses this gap by adopting a dual methodological strategy: (i) a systematic review of over 50 studies (2000–2025) on flux-limiting FLC approaches, and (ii) a comparative benchmark of Mamdani- and Sugeno-type FLCs applied to discontinuous solutions of HCLs. Our results demonstrate that, using weighted average defuzzification, Sugeno-type systems achieve approximately a 20% reduction in mean square error compared to the Mamdani centroid-based method in shock-dominated regimes. This performance gain aligns with adaptive CFD practices that prioritize rule-based, computationally inexpensive smoothing. By integrating theoretical analysis with experimental validation, this work strengthens the mathematical foundations of fuzzy control in PDE-driven modelling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信