{"title":"用QCD和规则研究三重重四夸克态","authors":"Wen-Shuai Zhang, Liang Tang","doi":"10.1016/j.nuclphysa.2025.123227","DOIUrl":null,"url":null,"abstract":"<div><div>We apply the method of QCD sum rules to study the <span><math><mi>Q</mi><mi>Q</mi><mover><mrow><mi>Q</mi></mrow><mrow><mo>¯</mo></mrow></mover><mover><mrow><mi>q</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> and <span><math><mi>Q</mi><mi>Q</mi><mover><mrow><mi>Q</mi></mrow><mrow><mo>¯</mo></mrow></mover><mover><mrow><mi>s</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> tetraquark states, where <span><math><mi>Q</mi><mo>=</mo><mi>c</mi><mo>,</mo><mi>b</mi></math></span> and <span><math><mi>q</mi><mo>=</mo><mi>u</mi><mo>,</mo><mi>d</mi></math></span>, with the quantum number <span><math><msup><mrow><mi>J</mi></mrow><mrow><mi>P</mi></mrow></msup><mo>=</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>. We consider the contributions of vacuum condensates up to dimension-9 in the operator product expansion, and use the energy scale formula <span><math><mi>μ</mi><mo>=</mo><msqrt><mrow><msubsup><mrow><mi>M</mi></mrow><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>−</mo><msup><mrow><mo>(</mo><mi>i</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>+</mo><mi>j</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>−</mo><mi>k</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> to determine the optimal energy scales for the QCD spectral densities. Our results indicate that triply charm tetraquark states <span><math><mi>c</mi><mi>c</mi><mover><mrow><mi>c</mi></mrow><mrow><mo>¯</mo></mrow></mover><mover><mrow><mi>q</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> and <span><math><mi>c</mi><mi>c</mi><mover><mrow><mi>c</mi></mrow><mrow><mo>¯</mo></mrow></mover><mover><mrow><mi>s</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> have masses in the ranges of <span><math><mn>5.38</mn><mo>−</mo><mn>5.84</mn><mspace></mspace><mtext>GeV</mtext></math></span> and <span><math><mn>5.66</mn><mo>−</mo><mn>6.16</mn><mspace></mspace><mtext>GeV</mtext></math></span>, respectively. In the bottom sector, triply bottom tetraquark states <span><math><mi>b</mi><mi>b</mi><mover><mrow><mi>b</mi></mrow><mrow><mo>¯</mo></mrow></mover><mover><mrow><mi>q</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> and <span><math><mi>b</mi><mi>b</mi><mover><mrow><mi>b</mi></mrow><mrow><mo>¯</mo></mrow></mover><mover><mrow><mi>s</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> have masses in the ranges of <span><math><mn>14.89</mn><mo>−</mo><mn>15.55</mn><mspace></mspace><mtext>GeV</mtext></math></span> and <span><math><mn>14.95</mn><mo>−</mo><mn>15.66</mn><mspace></mspace><mtext>GeV</mtext></math></span>, respectively. This study could help distinguish these states in upcoming high-energy nuclear and particle experiments.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1064 ","pages":"Article 123227"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating triply heavy tetraquark states through QCD sum rules\",\"authors\":\"Wen-Shuai Zhang, Liang Tang\",\"doi\":\"10.1016/j.nuclphysa.2025.123227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We apply the method of QCD sum rules to study the <span><math><mi>Q</mi><mi>Q</mi><mover><mrow><mi>Q</mi></mrow><mrow><mo>¯</mo></mrow></mover><mover><mrow><mi>q</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> and <span><math><mi>Q</mi><mi>Q</mi><mover><mrow><mi>Q</mi></mrow><mrow><mo>¯</mo></mrow></mover><mover><mrow><mi>s</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> tetraquark states, where <span><math><mi>Q</mi><mo>=</mo><mi>c</mi><mo>,</mo><mi>b</mi></math></span> and <span><math><mi>q</mi><mo>=</mo><mi>u</mi><mo>,</mo><mi>d</mi></math></span>, with the quantum number <span><math><msup><mrow><mi>J</mi></mrow><mrow><mi>P</mi></mrow></msup><mo>=</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>. We consider the contributions of vacuum condensates up to dimension-9 in the operator product expansion, and use the energy scale formula <span><math><mi>μ</mi><mo>=</mo><msqrt><mrow><msubsup><mrow><mi>M</mi></mrow><mrow><mi>X</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>−</mo><msup><mrow><mo>(</mo><mi>i</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>+</mo><mi>j</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>−</mo><mi>k</mi><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> to determine the optimal energy scales for the QCD spectral densities. Our results indicate that triply charm tetraquark states <span><math><mi>c</mi><mi>c</mi><mover><mrow><mi>c</mi></mrow><mrow><mo>¯</mo></mrow></mover><mover><mrow><mi>q</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> and <span><math><mi>c</mi><mi>c</mi><mover><mrow><mi>c</mi></mrow><mrow><mo>¯</mo></mrow></mover><mover><mrow><mi>s</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> have masses in the ranges of <span><math><mn>5.38</mn><mo>−</mo><mn>5.84</mn><mspace></mspace><mtext>GeV</mtext></math></span> and <span><math><mn>5.66</mn><mo>−</mo><mn>6.16</mn><mspace></mspace><mtext>GeV</mtext></math></span>, respectively. In the bottom sector, triply bottom tetraquark states <span><math><mi>b</mi><mi>b</mi><mover><mrow><mi>b</mi></mrow><mrow><mo>¯</mo></mrow></mover><mover><mrow><mi>q</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> and <span><math><mi>b</mi><mi>b</mi><mover><mrow><mi>b</mi></mrow><mrow><mo>¯</mo></mrow></mover><mover><mrow><mi>s</mi></mrow><mrow><mo>¯</mo></mrow></mover></math></span> have masses in the ranges of <span><math><mn>14.89</mn><mo>−</mo><mn>15.55</mn><mspace></mspace><mtext>GeV</mtext></math></span> and <span><math><mn>14.95</mn><mo>−</mo><mn>15.66</mn><mspace></mspace><mtext>GeV</mtext></math></span>, respectively. This study could help distinguish these states in upcoming high-energy nuclear and particle experiments.</div></div>\",\"PeriodicalId\":19246,\"journal\":{\"name\":\"Nuclear Physics A\",\"volume\":\"1064 \",\"pages\":\"Article 123227\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375947425002131\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947425002131","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Investigating triply heavy tetraquark states through QCD sum rules
We apply the method of QCD sum rules to study the and tetraquark states, where and , with the quantum number . We consider the contributions of vacuum condensates up to dimension-9 in the operator product expansion, and use the energy scale formula to determine the optimal energy scales for the QCD spectral densities. Our results indicate that triply charm tetraquark states and have masses in the ranges of and , respectively. In the bottom sector, triply bottom tetraquark states and have masses in the ranges of and , respectively. This study could help distinguish these states in upcoming high-energy nuclear and particle experiments.
期刊介绍:
Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.