PhaseTrack:基于物理的运动跟踪,通过相位引导运动生成

IF 2.8 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Ruikun Zheng, Chengjie Mou, Ruizhen Hu
{"title":"PhaseTrack:基于物理的运动跟踪,通过相位引导运动生成","authors":"Ruikun Zheng,&nbsp;Chengjie Mou,&nbsp;Ruizhen Hu","doi":"10.1016/j.cag.2025.104333","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we introduce PhaseTrack, a novel phase-guided physics-based motion tracking method that enhances motion generation quality by leveraging deep phase features learned from a periodic autoencoder. PhaseTrack employs a novel integration of phase-conditioned sparse mixture of experts and hierarchical encodersparse mixture of experts architecture conditioned on phase features within a world model framework, enabling the effective extraction of information from highly abstract phase representations without compromising real-time inference performance. Additionally, we propose a detail encoder that captures high-frequency motion details from reference target states, ensuring the realism of the generated motions. Our comprehensive evaluations demonstrate that PhaseTrack outperforms state-of-the-art model-based motion tracking methods in terms of precision and motion fidelity.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"132 ","pages":"Article 104333"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PhaseTrack: Physics-Based Motion Tracking via Phase-Guided Motion Generation\",\"authors\":\"Ruikun Zheng,&nbsp;Chengjie Mou,&nbsp;Ruizhen Hu\",\"doi\":\"10.1016/j.cag.2025.104333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we introduce PhaseTrack, a novel phase-guided physics-based motion tracking method that enhances motion generation quality by leveraging deep phase features learned from a periodic autoencoder. PhaseTrack employs a novel integration of phase-conditioned sparse mixture of experts and hierarchical encodersparse mixture of experts architecture conditioned on phase features within a world model framework, enabling the effective extraction of information from highly abstract phase representations without compromising real-time inference performance. Additionally, we propose a detail encoder that captures high-frequency motion details from reference target states, ensuring the realism of the generated motions. Our comprehensive evaluations demonstrate that PhaseTrack outperforms state-of-the-art model-based motion tracking methods in terms of precision and motion fidelity.</div></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"132 \",\"pages\":\"Article 104333\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849325001748\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325001748","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们介绍了PhaseTrack,这是一种新的基于相位引导物理的运动跟踪方法,通过利用从周期性自编码器中学习到的深相位特征来提高运动生成质量。PhaseTrack采用了一种新的相位条件下的专家稀疏混合和分层编码器的专家稀疏混合架构的集成,在世界模型框架内以相位特征为条件,能够从高度抽象的相位表示中有效地提取信息,而不会影响实时推理性能。此外,我们提出了一个细节编码器,从参考目标状态捕获高频运动细节,确保生成的运动的真实感。我们的综合评估表明,PhaseTrack在精度和运动保真度方面优于最先进的基于模型的运动跟踪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PhaseTrack: Physics-Based Motion Tracking via Phase-Guided Motion Generation
In this work, we introduce PhaseTrack, a novel phase-guided physics-based motion tracking method that enhances motion generation quality by leveraging deep phase features learned from a periodic autoencoder. PhaseTrack employs a novel integration of phase-conditioned sparse mixture of experts and hierarchical encodersparse mixture of experts architecture conditioned on phase features within a world model framework, enabling the effective extraction of information from highly abstract phase representations without compromising real-time inference performance. Additionally, we propose a detail encoder that captures high-frequency motion details from reference target states, ensuring the realism of the generated motions. Our comprehensive evaluations demonstrate that PhaseTrack outperforms state-of-the-art model-based motion tracking methods in terms of precision and motion fidelity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信