Vasileios K. Mappas , Bogdan Dorneanu , Eduardo Nolasco , Vassilios S. Vassiliadis , Harvey Arellano-Garcia
{"title":"池化和混合问题的可扩展量子退火:概念的方法论证明","authors":"Vasileios K. Mappas , Bogdan Dorneanu , Eduardo Nolasco , Vassilios S. Vassiliadis , Harvey Arellano-Garcia","doi":"10.1016/j.cherd.2025.08.031","DOIUrl":null,"url":null,"abstract":"<div><div>Industrial optimization challenges, such as the pooling and blending problem (PBP), require advanced computational methods to address non-convexity and scalability limitations in classical solvers. This work introduces a novel methodological framework for solving PBPs using quantum annealing (QA) that transforms the PBP into quadratic unconstrained binary optimization (QUBO) formulations at two resolution levels, enabling direct deployment on quantum annealers. Key innovations include a discretization technique tailored for PBP’s bilinear constraints and an embedding method optimized for current quantum hardware. Benchmarking against classical solvers focuses on Haverly’s classical three-stream PBP, enabling transparent comparison and development of quantum embedding and solution techniques. The proposed framework offers a scalable template for adapting similar engineering systems to quantum annealing architectures. Addressing genuine industrial-scale instances will require future advances in quantum hardware and embedding algorithms. The results demonstrate that QA exhibits the best performance among the examined alternatives, providing foundational insights towards leveraging QA in Process Systems Engineering.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"221 ","pages":"Pages 560-576"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards scalable quantum annealing for pooling and blending problems: A methodological proof-of-concept\",\"authors\":\"Vasileios K. Mappas , Bogdan Dorneanu , Eduardo Nolasco , Vassilios S. Vassiliadis , Harvey Arellano-Garcia\",\"doi\":\"10.1016/j.cherd.2025.08.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Industrial optimization challenges, such as the pooling and blending problem (PBP), require advanced computational methods to address non-convexity and scalability limitations in classical solvers. This work introduces a novel methodological framework for solving PBPs using quantum annealing (QA) that transforms the PBP into quadratic unconstrained binary optimization (QUBO) formulations at two resolution levels, enabling direct deployment on quantum annealers. Key innovations include a discretization technique tailored for PBP’s bilinear constraints and an embedding method optimized for current quantum hardware. Benchmarking against classical solvers focuses on Haverly’s classical three-stream PBP, enabling transparent comparison and development of quantum embedding and solution techniques. The proposed framework offers a scalable template for adapting similar engineering systems to quantum annealing architectures. Addressing genuine industrial-scale instances will require future advances in quantum hardware and embedding algorithms. The results demonstrate that QA exhibits the best performance among the examined alternatives, providing foundational insights towards leveraging QA in Process Systems Engineering.</div></div>\",\"PeriodicalId\":10019,\"journal\":{\"name\":\"Chemical Engineering Research & Design\",\"volume\":\"221 \",\"pages\":\"Pages 560-576\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Research & Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263876225004514\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876225004514","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Towards scalable quantum annealing for pooling and blending problems: A methodological proof-of-concept
Industrial optimization challenges, such as the pooling and blending problem (PBP), require advanced computational methods to address non-convexity and scalability limitations in classical solvers. This work introduces a novel methodological framework for solving PBPs using quantum annealing (QA) that transforms the PBP into quadratic unconstrained binary optimization (QUBO) formulations at two resolution levels, enabling direct deployment on quantum annealers. Key innovations include a discretization technique tailored for PBP’s bilinear constraints and an embedding method optimized for current quantum hardware. Benchmarking against classical solvers focuses on Haverly’s classical three-stream PBP, enabling transparent comparison and development of quantum embedding and solution techniques. The proposed framework offers a scalable template for adapting similar engineering systems to quantum annealing architectures. Addressing genuine industrial-scale instances will require future advances in quantum hardware and embedding algorithms. The results demonstrate that QA exhibits the best performance among the examined alternatives, providing foundational insights towards leveraging QA in Process Systems Engineering.
期刊介绍:
ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering.
Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.