基于随机森林的可持续能源系统风电功率预测方法

Zuriani Mustaffa , Mohd Herwan Sulaiman
{"title":"基于随机森林的可持续能源系统风电功率预测方法","authors":"Zuriani Mustaffa ,&nbsp;Mohd Herwan Sulaiman","doi":"10.1016/j.cles.2025.100210","DOIUrl":null,"url":null,"abstract":"<div><div>Wind power generation prediction is critical for the effective integration of renewable energy into the power grid, supporting stability, reliability, and sustainability in electricity supply. However, the inherent variability and non-linear characteristics of wind patterns present substantial challenges to accurate prediction. This study tackles these challenges by utilizing the Random Forest (RF) algorithm, an ensemble learning approach renowned for its ability to capture complex, non-linear relationships in data. The RF model’s performance is compared with three commonly used prediction techniques: Neural Networks (NN), Extreme Gradient Boosting (XGBoost), and Linear Regression (LR). The models were evaluated using historical wind power data and key meteorological variables, with performance assessed through multiple metrics, including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Maximum Error (MAX), Standard Deviation (STD DEV), and R-squared (R²). The results indicate that the RF model achieved the best performance, with an RMSE of 55.11 and an R² of 0.9882, outperforming the NN, XGBoost, and LR models. Specifically, the NN model achieved an RMSE of 95.5 with an R² of 0.9651, XGBoost had an RMSE of 93.32 and an R² of 0.9666, and the LR model exhibited an RMSE of 144.45 with an R² of 0.9084. These findings demonstrate RF's superior predictive accuracy and robustness, making it a powerful tool for wind power forecasting, providing valuable insights for grid management and renewable energy planning.</div></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":"12 ","pages":"Article 100210"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random forest based wind power prediction method for sustainable energy system\",\"authors\":\"Zuriani Mustaffa ,&nbsp;Mohd Herwan Sulaiman\",\"doi\":\"10.1016/j.cles.2025.100210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wind power generation prediction is critical for the effective integration of renewable energy into the power grid, supporting stability, reliability, and sustainability in electricity supply. However, the inherent variability and non-linear characteristics of wind patterns present substantial challenges to accurate prediction. This study tackles these challenges by utilizing the Random Forest (RF) algorithm, an ensemble learning approach renowned for its ability to capture complex, non-linear relationships in data. The RF model’s performance is compared with three commonly used prediction techniques: Neural Networks (NN), Extreme Gradient Boosting (XGBoost), and Linear Regression (LR). The models were evaluated using historical wind power data and key meteorological variables, with performance assessed through multiple metrics, including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Maximum Error (MAX), Standard Deviation (STD DEV), and R-squared (R²). The results indicate that the RF model achieved the best performance, with an RMSE of 55.11 and an R² of 0.9882, outperforming the NN, XGBoost, and LR models. Specifically, the NN model achieved an RMSE of 95.5 with an R² of 0.9651, XGBoost had an RMSE of 93.32 and an R² of 0.9666, and the LR model exhibited an RMSE of 144.45 with an R² of 0.9084. These findings demonstrate RF's superior predictive accuracy and robustness, making it a powerful tool for wind power forecasting, providing valuable insights for grid management and renewable energy planning.</div></div>\",\"PeriodicalId\":100252,\"journal\":{\"name\":\"Cleaner Energy Systems\",\"volume\":\"12 \",\"pages\":\"Article 100210\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277278312500041X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277278312500041X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

风力发电预测对于可再生能源有效整合到电网中,支持电力供应的稳定性、可靠性和可持续性至关重要。然而,风型固有的变异性和非线性特征给准确预测带来了巨大的挑战。本研究通过使用随机森林(RF)算法来解决这些挑战,随机森林算法是一种以捕获数据中复杂的非线性关系的能力而闻名的集成学习方法。将RF模型的性能与三种常用的预测技术进行了比较:神经网络(NN)、极端梯度增强(XGBoost)和线性回归(LR)。使用历史风电数据和关键气象变量对模型进行评估,并通过包括均方根误差(RMSE)、平均绝对误差(MAE)、最大误差(MAX)、标准差(STD DEV)和R²(R²)在内的多个指标对模型的性能进行评估。结果表明,射频模型取得了最佳的性能,RMSE为55.11,R²为0.9882,优于NN、XGBoost和LR模型。其中,NN模型RMSE为95.5,R²为0.9651;XGBoost模型RMSE为93.32,R²为0.9666;LR模型RMSE为144.45,R²为0.9084。这些发现证明了RF的卓越预测准确性和稳健性,使其成为风电预测的有力工具,为电网管理和可再生能源规划提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Random forest based wind power prediction method for sustainable energy system

Random forest based wind power prediction method for sustainable energy system
Wind power generation prediction is critical for the effective integration of renewable energy into the power grid, supporting stability, reliability, and sustainability in electricity supply. However, the inherent variability and non-linear characteristics of wind patterns present substantial challenges to accurate prediction. This study tackles these challenges by utilizing the Random Forest (RF) algorithm, an ensemble learning approach renowned for its ability to capture complex, non-linear relationships in data. The RF model’s performance is compared with three commonly used prediction techniques: Neural Networks (NN), Extreme Gradient Boosting (XGBoost), and Linear Regression (LR). The models were evaluated using historical wind power data and key meteorological variables, with performance assessed through multiple metrics, including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Maximum Error (MAX), Standard Deviation (STD DEV), and R-squared (R²). The results indicate that the RF model achieved the best performance, with an RMSE of 55.11 and an R² of 0.9882, outperforming the NN, XGBoost, and LR models. Specifically, the NN model achieved an RMSE of 95.5 with an R² of 0.9651, XGBoost had an RMSE of 93.32 and an R² of 0.9666, and the LR model exhibited an RMSE of 144.45 with an R² of 0.9084. These findings demonstrate RF's superior predictive accuracy and robustness, making it a powerful tool for wind power forecasting, providing valuable insights for grid management and renewable energy planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信