极大二部平面图的递归刻划

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Metrose Metsidik , Helin Gong
{"title":"极大二部平面图的递归刻划","authors":"Metrose Metsidik ,&nbsp;Helin Gong","doi":"10.1016/j.dam.2025.08.032","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we initiate our study by demonstrating that bipartite-minors, derived through vertex/edge deletions and edge contractions within a bond, inherently preserve the bipartite property. Leveraging this, we establish a well-quasi-ordering on the class of bipartite graphs. Subsequently, we provide elegant and succinct characterizations of bipartite graphs, planar bipartite graphs, and outer-planar bipartite graphs, all formulated in terms of excluded bipartite-minors. Finally, we introduce a novel planar operation that enables the recursive construction of all maximal bipartite planar graphs, starting from a single vertex.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 547-552"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recursive characterization of maximal bipartite planar graphs\",\"authors\":\"Metrose Metsidik ,&nbsp;Helin Gong\",\"doi\":\"10.1016/j.dam.2025.08.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we initiate our study by demonstrating that bipartite-minors, derived through vertex/edge deletions and edge contractions within a bond, inherently preserve the bipartite property. Leveraging this, we establish a well-quasi-ordering on the class of bipartite graphs. Subsequently, we provide elegant and succinct characterizations of bipartite graphs, planar bipartite graphs, and outer-planar bipartite graphs, all formulated in terms of excluded bipartite-minors. Finally, we introduce a novel planar operation that enables the recursive construction of all maximal bipartite planar graphs, starting from a single vertex.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"378 \",\"pages\":\"Pages 547-552\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25004731\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004731","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先证明了在一个键内通过顶点/边的删除和边的收缩而得到的二部小边,固有地保持了二部性质。利用这一点,我们在二部图类上建立了一个拟良序。随后,我们提供了二部图、平面二部图和外平面二部图的优雅和简洁的特征,所有这些特征都是用排除的二部次元来表示的。最后,我们引入了一种新的平面运算,可以从单个顶点开始递归构造所有最大二部平面图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursive characterization of maximal bipartite planar graphs
In this paper, we initiate our study by demonstrating that bipartite-minors, derived through vertex/edge deletions and edge contractions within a bond, inherently preserve the bipartite property. Leveraging this, we establish a well-quasi-ordering on the class of bipartite graphs. Subsequently, we provide elegant and succinct characterizations of bipartite graphs, planar bipartite graphs, and outer-planar bipartite graphs, all formulated in terms of excluded bipartite-minors. Finally, we introduce a novel planar operation that enables the recursive construction of all maximal bipartite planar graphs, starting from a single vertex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信