Al2O3、BaTiO3和ZrO2纳米陶瓷填料在高性能锂金属电池PVDF-HFP基复合聚合物电解质中的关键作用

IF 3.3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Mononita Das , Kuntal Ghosh , Vijaya , Mir Wasim Raja
{"title":"Al2O3、BaTiO3和ZrO2纳米陶瓷填料在高性能锂金属电池PVDF-HFP基复合聚合物电解质中的关键作用","authors":"Mononita Das ,&nbsp;Kuntal Ghosh ,&nbsp;Vijaya ,&nbsp;Mir Wasim Raja","doi":"10.1016/j.ssi.2025.117008","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium metal batteries (LMBs) can be the ultimate choice for future battery technologies since they use Lithium metal as anode, which offers high theoretical capacity (3860 mAh.g<sup>−1</sup>) and lowest electrochemical potential (−3.04 V vs. SHE). However, their commercialization is limited by dendritic growth, interfacial instability, and safety risks associated with liquid electrolytes. In this work, composite solid polymer electrolytes (CSPEs) are developed by incorporating various (Al<sub>2</sub>O<sub>3</sub>, BaTiO<sub>3</sub>, and ZrO<sub>2</sub>) ceramic fillers into a PVDF-HFP/LiTFSI matrix via a scalable solution casting method. Among these, optimized 10 wt% ZrO<sub>2</sub>-based CSPE (PLZ) delivers the highest room-temperature ionic conductivity (9.26 × 10<sup>−5</sup> S cm<sup>−1</sup>), excellent Li<sup>+</sup> transference number (0.55), superior tensile strength (3.23 MPa), wide potential window (5.33 V), and good flame retardancy. Li/Li symmetric cells using PLZ showed stable lithium plating/stripping for more than 480 h at 0.10 mA.cm<sup>−2</sup> with a low overpotential of ∼7 mV. Electrochemical impedance spectroscopy and equivalent circuit fitting confirmed the lowest increase in interfacial resistance after cycling. Time-resolved distribution of relaxation time (DRT) and 2D contour analysis revealed that PLZ maintained stable SEI and charge-transfer resistances, while bare CSPEs showed growing interfacial instability during cycling. These improvements are attributed to Lewis acid-base interactions and surface charge effects that reduce crystallinity and promote Li<sup>+</sup> mobility. Full-cell evaluations with LiFePO<sub>4</sub> and NMC111 cathodes demonstrated high discharge capacities and good cycling stability. Thus, this study offers a promising pathway for developing robust and safe CSPEs for next-generation solid-state LMBs.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"430 ","pages":"Article 117008"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The critical role of Al2O3, BaTiO3 and ZrO2 nanoceramic fillers in PVDF-HFP based composite polymer electrolytes for high performance lithium-metal batteries\",\"authors\":\"Mononita Das ,&nbsp;Kuntal Ghosh ,&nbsp;Vijaya ,&nbsp;Mir Wasim Raja\",\"doi\":\"10.1016/j.ssi.2025.117008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lithium metal batteries (LMBs) can be the ultimate choice for future battery technologies since they use Lithium metal as anode, which offers high theoretical capacity (3860 mAh.g<sup>−1</sup>) and lowest electrochemical potential (−3.04 V vs. SHE). However, their commercialization is limited by dendritic growth, interfacial instability, and safety risks associated with liquid electrolytes. In this work, composite solid polymer electrolytes (CSPEs) are developed by incorporating various (Al<sub>2</sub>O<sub>3</sub>, BaTiO<sub>3</sub>, and ZrO<sub>2</sub>) ceramic fillers into a PVDF-HFP/LiTFSI matrix via a scalable solution casting method. Among these, optimized 10 wt% ZrO<sub>2</sub>-based CSPE (PLZ) delivers the highest room-temperature ionic conductivity (9.26 × 10<sup>−5</sup> S cm<sup>−1</sup>), excellent Li<sup>+</sup> transference number (0.55), superior tensile strength (3.23 MPa), wide potential window (5.33 V), and good flame retardancy. Li/Li symmetric cells using PLZ showed stable lithium plating/stripping for more than 480 h at 0.10 mA.cm<sup>−2</sup> with a low overpotential of ∼7 mV. Electrochemical impedance spectroscopy and equivalent circuit fitting confirmed the lowest increase in interfacial resistance after cycling. Time-resolved distribution of relaxation time (DRT) and 2D contour analysis revealed that PLZ maintained stable SEI and charge-transfer resistances, while bare CSPEs showed growing interfacial instability during cycling. These improvements are attributed to Lewis acid-base interactions and surface charge effects that reduce crystallinity and promote Li<sup>+</sup> mobility. Full-cell evaluations with LiFePO<sub>4</sub> and NMC111 cathodes demonstrated high discharge capacities and good cycling stability. Thus, this study offers a promising pathway for developing robust and safe CSPEs for next-generation solid-state LMBs.</div></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"430 \",\"pages\":\"Article 117008\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273825002279\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825002279","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂金属电池(lmb)可以成为未来电池技术的最终选择,因为它们使用锂金属作为阳极,提供高理论容量(3860毫安时)。g−1)和最低电化学电位(−3.04 V vs. SHE)。然而,它们的商业化受到枝晶生长、界面不稳定性和与液体电解质相关的安全风险的限制。在这项工作中,通过可扩展的溶液铸造方法,将各种(Al2O3, BaTiO3和ZrO2)陶瓷填料掺入PVDF-HFP/LiTFSI基体中,开发了复合固体聚合物电解质(cspe)。其中,优化后的10 wt% zro2基CSPE (PLZ)具有最高的室温离子电导率(9.26 × 10−5 S cm−1)、优异的Li+转移数(0.55)、优异的抗拉强度(3.23 MPa)、宽电位窗(5.33 V)和良好的阻燃性。使用PLZ的Li/Li对称电池在0.10 mA.cm−2下具有低过电位~ 7 mV,可稳定镀锂/剥离超过480 h。电化学阻抗谱和等效电路拟合证实循环后界面电阻增幅最小。弛豫时间(DRT)的时间分辨分布和二维轮廓分析表明,PLZ保持稳定的SEI和电荷转移电阻,而裸cspe在循环过程中界面不稳定性增加。这些改进归功于路易斯酸碱相互作用和表面电荷效应,它们降低了结晶度,促进了Li+的迁移率。使用LiFePO4和NMC111阴极进行的全电池评估显示出高的放电容量和良好的循环稳定性。因此,该研究为下一代固态lmb开发稳健安全的cspe提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The critical role of Al2O3, BaTiO3 and ZrO2 nanoceramic fillers in PVDF-HFP based composite polymer electrolytes for high performance lithium-metal batteries

The critical role of Al2O3, BaTiO3 and ZrO2 nanoceramic fillers in PVDF-HFP based composite polymer electrolytes for high performance lithium-metal batteries
Lithium metal batteries (LMBs) can be the ultimate choice for future battery technologies since they use Lithium metal as anode, which offers high theoretical capacity (3860 mAh.g−1) and lowest electrochemical potential (−3.04 V vs. SHE). However, their commercialization is limited by dendritic growth, interfacial instability, and safety risks associated with liquid electrolytes. In this work, composite solid polymer electrolytes (CSPEs) are developed by incorporating various (Al2O3, BaTiO3, and ZrO2) ceramic fillers into a PVDF-HFP/LiTFSI matrix via a scalable solution casting method. Among these, optimized 10 wt% ZrO2-based CSPE (PLZ) delivers the highest room-temperature ionic conductivity (9.26 × 10−5 S cm−1), excellent Li+ transference number (0.55), superior tensile strength (3.23 MPa), wide potential window (5.33 V), and good flame retardancy. Li/Li symmetric cells using PLZ showed stable lithium plating/stripping for more than 480 h at 0.10 mA.cm−2 with a low overpotential of ∼7 mV. Electrochemical impedance spectroscopy and equivalent circuit fitting confirmed the lowest increase in interfacial resistance after cycling. Time-resolved distribution of relaxation time (DRT) and 2D contour analysis revealed that PLZ maintained stable SEI and charge-transfer resistances, while bare CSPEs showed growing interfacial instability during cycling. These improvements are attributed to Lewis acid-base interactions and surface charge effects that reduce crystallinity and promote Li+ mobility. Full-cell evaluations with LiFePO4 and NMC111 cathodes demonstrated high discharge capacities and good cycling stability. Thus, this study offers a promising pathway for developing robust and safe CSPEs for next-generation solid-state LMBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信