{"title":"异牡荆素通过协调血管生成和胶原重塑加速糖尿病伤口修复:来自细胞和链脲霉素诱导的SD大鼠模型的机制见解","authors":"Ting-ting Chen , Li-qin Xu , Zhi-gang Gao , Wei-wei Zhou , Yan Ying","doi":"10.1016/j.tice.2025.103100","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic diabetic wounds pose significant clinical challenges due to persistent inflammation, vascular insufficiency, and impaired tissue remodeling, leading to poor healing outcomes. The PI3K/Akt/eNOS signaling pathway is critical for regulating angiogenesis, apoptosis, and extracellular matrix organization—key processes disrupted in diabetic wounds. Isovitexin, a natural flavonoid from plants like passionflower and Cannabis, exhibits well-documented antioxidant and anti-inflammatory properties. However, its therapeutic potential and mechanistic action in diabetic wounds, particularly regarding multi-targeted regulation of angiogenesis, collagen deposition, and apoptosis within the complex wound microenvironment, remain unexplored. This study demonstrates that isovitexin accelerates diabetic wound healing. Using streptozotocin-induced diabetic rodent models and cell culture, we found isovitexin significantly promoted angiogenesis and vascular maturation, reduced oxidative damage and apoptosis, and improved collagen organization versus controls. Crucially, these effects were entirely abolished by the eNOS inhibitor L-NAME, confirming PI3K/Akt/eNOS pathway specificity. Whereas previous studies have largely focused on single-pathway interventions for diabetic wounds, the concurrent modulation of angiogenesis, matrix remodeling, and apoptosis remains unexplored. Our study uniquely demonstrates that isovitexin activates the PI3K/Akt/eNOS pathway to synchronously enhance angiogenesis, promote collagen maturation, and inhibit apoptosis. This tripartite mechanism—uncovered for the first time—provides a novel therapeutic strategy to address the multifactorial pathology of diabetic wounds. Future research should prioritize clinical translation of these findings.</div></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"97 ","pages":"Article 103100"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isovitexin accelerates diabetic wound repair via coordinated angiogenesis and collagen remodeling: Mechanistic insights from cellular and streptozotocin-induced SD rat models\",\"authors\":\"Ting-ting Chen , Li-qin Xu , Zhi-gang Gao , Wei-wei Zhou , Yan Ying\",\"doi\":\"10.1016/j.tice.2025.103100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chronic diabetic wounds pose significant clinical challenges due to persistent inflammation, vascular insufficiency, and impaired tissue remodeling, leading to poor healing outcomes. The PI3K/Akt/eNOS signaling pathway is critical for regulating angiogenesis, apoptosis, and extracellular matrix organization—key processes disrupted in diabetic wounds. Isovitexin, a natural flavonoid from plants like passionflower and Cannabis, exhibits well-documented antioxidant and anti-inflammatory properties. However, its therapeutic potential and mechanistic action in diabetic wounds, particularly regarding multi-targeted regulation of angiogenesis, collagen deposition, and apoptosis within the complex wound microenvironment, remain unexplored. This study demonstrates that isovitexin accelerates diabetic wound healing. Using streptozotocin-induced diabetic rodent models and cell culture, we found isovitexin significantly promoted angiogenesis and vascular maturation, reduced oxidative damage and apoptosis, and improved collagen organization versus controls. Crucially, these effects were entirely abolished by the eNOS inhibitor L-NAME, confirming PI3K/Akt/eNOS pathway specificity. Whereas previous studies have largely focused on single-pathway interventions for diabetic wounds, the concurrent modulation of angiogenesis, matrix remodeling, and apoptosis remains unexplored. Our study uniquely demonstrates that isovitexin activates the PI3K/Akt/eNOS pathway to synchronously enhance angiogenesis, promote collagen maturation, and inhibit apoptosis. This tripartite mechanism—uncovered for the first time—provides a novel therapeutic strategy to address the multifactorial pathology of diabetic wounds. Future research should prioritize clinical translation of these findings.</div></div>\",\"PeriodicalId\":23201,\"journal\":{\"name\":\"Tissue & cell\",\"volume\":\"97 \",\"pages\":\"Article 103100\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue & cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040816625003829\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816625003829","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Isovitexin accelerates diabetic wound repair via coordinated angiogenesis and collagen remodeling: Mechanistic insights from cellular and streptozotocin-induced SD rat models
Chronic diabetic wounds pose significant clinical challenges due to persistent inflammation, vascular insufficiency, and impaired tissue remodeling, leading to poor healing outcomes. The PI3K/Akt/eNOS signaling pathway is critical for regulating angiogenesis, apoptosis, and extracellular matrix organization—key processes disrupted in diabetic wounds. Isovitexin, a natural flavonoid from plants like passionflower and Cannabis, exhibits well-documented antioxidant and anti-inflammatory properties. However, its therapeutic potential and mechanistic action in diabetic wounds, particularly regarding multi-targeted regulation of angiogenesis, collagen deposition, and apoptosis within the complex wound microenvironment, remain unexplored. This study demonstrates that isovitexin accelerates diabetic wound healing. Using streptozotocin-induced diabetic rodent models and cell culture, we found isovitexin significantly promoted angiogenesis and vascular maturation, reduced oxidative damage and apoptosis, and improved collagen organization versus controls. Crucially, these effects were entirely abolished by the eNOS inhibitor L-NAME, confirming PI3K/Akt/eNOS pathway specificity. Whereas previous studies have largely focused on single-pathway interventions for diabetic wounds, the concurrent modulation of angiogenesis, matrix remodeling, and apoptosis remains unexplored. Our study uniquely demonstrates that isovitexin activates the PI3K/Akt/eNOS pathway to synchronously enhance angiogenesis, promote collagen maturation, and inhibit apoptosis. This tripartite mechanism—uncovered for the first time—provides a novel therapeutic strategy to address the multifactorial pathology of diabetic wounds. Future research should prioritize clinical translation of these findings.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.