Danyu Bai , Wenjia Zheng , Chenbo Zang , Jie Yang , Chin-Chia Wu , Hu Qin
{"title":"带发布日期的分布式双代理流水车间调度离散优化算法","authors":"Danyu Bai , Wenjia Zheng , Chenbo Zang , Jie Yang , Chin-Chia Wu , Hu Qin","doi":"10.1016/j.swevo.2025.102101","DOIUrl":null,"url":null,"abstract":"<div><div>The globalization of production has accelerated the growth of contract manufacturing, as brand firms increasingly outsource production to specialized manufacturers to reduce costs and improve efficiency. To meet rising production demands, contract manufacturers establish production facilities across global regions, leveraging localized advantages in labor costs, raw material access, and logistics infrastructure. Contract manufacturers in distributed assembly-line systems face the critical challenge of dynamically coordinating order allocation across decentralized facilities to satisfy multi-client requirements. This study introduces a distributed bi-agent permutation flowshop scheduling for minimizing the makespans of both agents while considering release dates to simulate real-world production scenarios. An exact branch-and-bound algorithm is proposed for optimizing the weighted sum of two objectives. A novel Q-learning-based artificial bee colony algorithm is presented to construct high-quality Pareto frontiers for the bi-objective optimization problem. The effectiveness of the proposed algorithms is validated through a comprehensive set of numerical experiments.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"98 ","pages":"Article 102101"},"PeriodicalIF":8.5000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete optimization algorithms for distributed bi-agent flowshop scheduling with release dates\",\"authors\":\"Danyu Bai , Wenjia Zheng , Chenbo Zang , Jie Yang , Chin-Chia Wu , Hu Qin\",\"doi\":\"10.1016/j.swevo.2025.102101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The globalization of production has accelerated the growth of contract manufacturing, as brand firms increasingly outsource production to specialized manufacturers to reduce costs and improve efficiency. To meet rising production demands, contract manufacturers establish production facilities across global regions, leveraging localized advantages in labor costs, raw material access, and logistics infrastructure. Contract manufacturers in distributed assembly-line systems face the critical challenge of dynamically coordinating order allocation across decentralized facilities to satisfy multi-client requirements. This study introduces a distributed bi-agent permutation flowshop scheduling for minimizing the makespans of both agents while considering release dates to simulate real-world production scenarios. An exact branch-and-bound algorithm is proposed for optimizing the weighted sum of two objectives. A novel Q-learning-based artificial bee colony algorithm is presented to construct high-quality Pareto frontiers for the bi-objective optimization problem. The effectiveness of the proposed algorithms is validated through a comprehensive set of numerical experiments.</div></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"98 \",\"pages\":\"Article 102101\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650225002597\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650225002597","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Discrete optimization algorithms for distributed bi-agent flowshop scheduling with release dates
The globalization of production has accelerated the growth of contract manufacturing, as brand firms increasingly outsource production to specialized manufacturers to reduce costs and improve efficiency. To meet rising production demands, contract manufacturers establish production facilities across global regions, leveraging localized advantages in labor costs, raw material access, and logistics infrastructure. Contract manufacturers in distributed assembly-line systems face the critical challenge of dynamically coordinating order allocation across decentralized facilities to satisfy multi-client requirements. This study introduces a distributed bi-agent permutation flowshop scheduling for minimizing the makespans of both agents while considering release dates to simulate real-world production scenarios. An exact branch-and-bound algorithm is proposed for optimizing the weighted sum of two objectives. A novel Q-learning-based artificial bee colony algorithm is presented to construct high-quality Pareto frontiers for the bi-objective optimization problem. The effectiveness of the proposed algorithms is validated through a comprehensive set of numerical experiments.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.