基于多子集的MDS欧几里德自对偶码的构造

IF 1.2 3区 数学 Q1 MATHEMATICS
Weirong Meng , Weijun Fang , Fang-Wei Fu , Haiyan Zhou , Ziyi Gu
{"title":"基于多子集的MDS欧几里德自对偶码的构造","authors":"Weirong Meng ,&nbsp;Weijun Fang ,&nbsp;Fang-Wei Fu ,&nbsp;Haiyan Zhou ,&nbsp;Ziyi Gu","doi":"10.1016/j.ffa.2025.102718","DOIUrl":null,"url":null,"abstract":"<div><div>MDS self-dual codes have good algebraic structure, and their parameters are completely determined by the code length. In recent years, the construction of MDS Euclidean self-dual codes with new lengths has become an important issue in coding theory. In this paper, we are committed to constructing new MDS Euclidean self-dual codes via generalized Reed-Solomon (GRS) codes and their extended (EGRS) codes. The main effort of our constructions is to find suitable subsets of finite fields as the evaluation sets, ensuring that the corresponding (extended) GRS codes are Euclidean self-dual. Firstly, we present a method for selecting evaluation sets from multiple intersecting subsets and provide a theorem to guarantee that the chosen evaluation sets meet the desired criteria. Secondly, based on this theorem, we construct six new classes of MDS Euclidean self-dual codes using the norm function, as well as the union of three multiplicity subgroups and their cosets respectively. Finally, in our constructions, the proportion of possible MDS Euclidean self-dual codes exceeds 85%, which is much higher than previously reported results.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"109 ","pages":"Article 102718"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of MDS Euclidean self-dual codes via multiple subsets\",\"authors\":\"Weirong Meng ,&nbsp;Weijun Fang ,&nbsp;Fang-Wei Fu ,&nbsp;Haiyan Zhou ,&nbsp;Ziyi Gu\",\"doi\":\"10.1016/j.ffa.2025.102718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>MDS self-dual codes have good algebraic structure, and their parameters are completely determined by the code length. In recent years, the construction of MDS Euclidean self-dual codes with new lengths has become an important issue in coding theory. In this paper, we are committed to constructing new MDS Euclidean self-dual codes via generalized Reed-Solomon (GRS) codes and their extended (EGRS) codes. The main effort of our constructions is to find suitable subsets of finite fields as the evaluation sets, ensuring that the corresponding (extended) GRS codes are Euclidean self-dual. Firstly, we present a method for selecting evaluation sets from multiple intersecting subsets and provide a theorem to guarantee that the chosen evaluation sets meet the desired criteria. Secondly, based on this theorem, we construct six new classes of MDS Euclidean self-dual codes using the norm function, as well as the union of three multiplicity subgroups and their cosets respectively. Finally, in our constructions, the proportion of possible MDS Euclidean self-dual codes exceeds 85%, which is much higher than previously reported results.</div></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"109 \",\"pages\":\"Article 102718\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579725001480\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001480","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

MDS自对偶码具有良好的代数结构,其参数完全由码长决定。近年来,构造具有新长度的MDS欧几里得自对偶码已成为编码理论中的一个重要问题。在本文中,我们致力于通过广义Reed-Solomon (GRS)码及其扩展(EGRS)码构造新的MDS欧几里得自对偶码。我们构造的主要工作是找到合适的有限域子集作为评估集,确保相应的(扩展的)GRS码是欧几里得自对偶的。首先,提出了一种从多个相交子集中选择评价集的方法,并给出了一个保证所选评价集满足期望准则的定理。其次,在此定理的基础上,利用范数函数构造了6类新的MDS欧几里德自对偶码,并分别构造了3个多重子群及其余集的并。最后,在我们的结构中,可能的MDS欧几里得自对偶码的比例超过85%,远远高于先前报道的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of MDS Euclidean self-dual codes via multiple subsets
MDS self-dual codes have good algebraic structure, and their parameters are completely determined by the code length. In recent years, the construction of MDS Euclidean self-dual codes with new lengths has become an important issue in coding theory. In this paper, we are committed to constructing new MDS Euclidean self-dual codes via generalized Reed-Solomon (GRS) codes and their extended (EGRS) codes. The main effort of our constructions is to find suitable subsets of finite fields as the evaluation sets, ensuring that the corresponding (extended) GRS codes are Euclidean self-dual. Firstly, we present a method for selecting evaluation sets from multiple intersecting subsets and provide a theorem to guarantee that the chosen evaluation sets meet the desired criteria. Secondly, based on this theorem, we construct six new classes of MDS Euclidean self-dual codes using the norm function, as well as the union of three multiplicity subgroups and their cosets respectively. Finally, in our constructions, the proportion of possible MDS Euclidean self-dual codes exceeds 85%, which is much higher than previously reported results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信