超级电容器电极用铁钒前驱体与三聚氰胺在惰性气体中热解合成Fe3C/VN/C复合材料

IF 5.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuan Zhang , Yongtao Tan , Fengwei Tuo , Haorui Liu , Ning Mi , Jiantie Xu
{"title":"超级电容器电极用铁钒前驱体与三聚氰胺在惰性气体中热解合成Fe3C/VN/C复合材料","authors":"Yuan Zhang ,&nbsp;Yongtao Tan ,&nbsp;Fengwei Tuo ,&nbsp;Haorui Liu ,&nbsp;Ning Mi ,&nbsp;Jiantie Xu","doi":"10.1016/j.materresbull.2025.113759","DOIUrl":null,"url":null,"abstract":"<div><div>Vanadium nitride (VN) has attracted significant attention as a promising electrode material for supercapacitors mainly owing to its high theoretical specific capacitance and broad electrochemical stability window. However, poor cycling stability caused by dissolution in alkaline electrolyte largely restricts its practical applications. Herein, a series of heterojunction Fe<sub>3</sub>C/VN/C-<em>x</em> composites were synthesized <em>via</em> a one-step pyrolysis strategy for pyrolysis mixture of iron-vanadium precursor and melamine at 700 °C for 2 h. Among the series, the optimized Fe<sub>3</sub>C/VN/C-2 exhibits a high specific capacitance of 291.2 F g<sup>-1</sup> at 0.5 A g<sup>-1</sup>, which is 2.7 times higher than pristine VN with 108.3 F g<sup>-1</sup>. Moreover, the Fe<sub>3</sub>C/VN/C-2 enables asymmetric supercapacitor device (Ni(OH)<sub>2</sub>||Fe<sub>3</sub>C/VN/C-2) achieving a high energy density of 14.9 Wh kg<sup>-1</sup> with high power density of 400.1 W kg<sup>-1</sup> and a high power density of 3998.6 W kg<sup>-1</sup> with an energy density of 6.2 Wh kg<sup>-1</sup>, and retaining 92.7 % of its initial capacitance after 10,000 cycles (17.2 F g<sup>-1</sup>). The enhanced electrochemical performance of Fe<sub>3</sub>C/VN/C-2 is attributed to the synergistic effect of the heterojunction and carbon matrix, which suppress vanadium dissolution and accelerate charge transfer kinetics.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"194 ","pages":"Article 113759"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Fe3C/VN/C composites through pyrolysis mixture of iron-vanadium precursor and melamine in inert gas for a supercapacitor electrode\",\"authors\":\"Yuan Zhang ,&nbsp;Yongtao Tan ,&nbsp;Fengwei Tuo ,&nbsp;Haorui Liu ,&nbsp;Ning Mi ,&nbsp;Jiantie Xu\",\"doi\":\"10.1016/j.materresbull.2025.113759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vanadium nitride (VN) has attracted significant attention as a promising electrode material for supercapacitors mainly owing to its high theoretical specific capacitance and broad electrochemical stability window. However, poor cycling stability caused by dissolution in alkaline electrolyte largely restricts its practical applications. Herein, a series of heterojunction Fe<sub>3</sub>C/VN/C-<em>x</em> composites were synthesized <em>via</em> a one-step pyrolysis strategy for pyrolysis mixture of iron-vanadium precursor and melamine at 700 °C for 2 h. Among the series, the optimized Fe<sub>3</sub>C/VN/C-2 exhibits a high specific capacitance of 291.2 F g<sup>-1</sup> at 0.5 A g<sup>-1</sup>, which is 2.7 times higher than pristine VN with 108.3 F g<sup>-1</sup>. Moreover, the Fe<sub>3</sub>C/VN/C-2 enables asymmetric supercapacitor device (Ni(OH)<sub>2</sub>||Fe<sub>3</sub>C/VN/C-2) achieving a high energy density of 14.9 Wh kg<sup>-1</sup> with high power density of 400.1 W kg<sup>-1</sup> and a high power density of 3998.6 W kg<sup>-1</sup> with an energy density of 6.2 Wh kg<sup>-1</sup>, and retaining 92.7 % of its initial capacitance after 10,000 cycles (17.2 F g<sup>-1</sup>). The enhanced electrochemical performance of Fe<sub>3</sub>C/VN/C-2 is attributed to the synergistic effect of the heterojunction and carbon matrix, which suppress vanadium dissolution and accelerate charge transfer kinetics.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"194 \",\"pages\":\"Article 113759\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825004660\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825004660","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氮化钒(VN)作为一种极具潜力的超级电容器电极材料,由于其较高的理论比电容和较宽的电化学稳定窗口而备受关注。但在碱性电解液中溶解引起的循环稳定性差,在很大程度上制约了其实际应用。本文将铁钒前体与三聚氰胺混合在700℃下热解2 h,采用一步热解的方法合成了一系列异质结Fe3C/VN/C-x复合材料。其中,优化后的Fe3C/VN/C-2在0.5 a g-1时具有291.2 F -1的高比电容,比原始VN的108.3 F -1提高了2.7倍。此外,Fe3C/VN/C-2使非对称超级电容器器件(Ni(OH)2||Fe3C/VN/C-2)获得了14.9 Wh kg-1的高能量密度和40.1 W kg-1的高功率密度,以及3998.6 W kg-1的高功率密度和6.2 Wh kg-1的能量密度,并且在10,000次循环后保持了92.7%的初始电容(17.2 F -1)。Fe3C/VN/C-2的电化学性能增强是由于异质结和碳基体的协同作用,抑制了钒的溶解,加速了电荷转移动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis of Fe3C/VN/C composites through pyrolysis mixture of iron-vanadium precursor and melamine in inert gas for a supercapacitor electrode

Synthesis of Fe3C/VN/C composites through pyrolysis mixture of iron-vanadium precursor and melamine in inert gas for a supercapacitor electrode
Vanadium nitride (VN) has attracted significant attention as a promising electrode material for supercapacitors mainly owing to its high theoretical specific capacitance and broad electrochemical stability window. However, poor cycling stability caused by dissolution in alkaline electrolyte largely restricts its practical applications. Herein, a series of heterojunction Fe3C/VN/C-x composites were synthesized via a one-step pyrolysis strategy for pyrolysis mixture of iron-vanadium precursor and melamine at 700 °C for 2 h. Among the series, the optimized Fe3C/VN/C-2 exhibits a high specific capacitance of 291.2 F g-1 at 0.5 A g-1, which is 2.7 times higher than pristine VN with 108.3 F g-1. Moreover, the Fe3C/VN/C-2 enables asymmetric supercapacitor device (Ni(OH)2||Fe3C/VN/C-2) achieving a high energy density of 14.9 Wh kg-1 with high power density of 400.1 W kg-1 and a high power density of 3998.6 W kg-1 with an energy density of 6.2 Wh kg-1, and retaining 92.7 % of its initial capacitance after 10,000 cycles (17.2 F g-1). The enhanced electrochemical performance of Fe3C/VN/C-2 is attributed to the synergistic effect of the heterojunction and carbon matrix, which suppress vanadium dissolution and accelerate charge transfer kinetics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信