采用优化热辐射控制的多晶Fe3O4超粒子进行脑肿瘤热疗的先进有限元模拟

IF 2.5 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Muhammad Suleman , Arslan Mehmood , Sami Ullah Khan , Adnan , Nermeen Abdullah , Mouloud Aoudia , Chemseddine Maatki , Lioua Kolsi
{"title":"采用优化热辐射控制的多晶Fe3O4超粒子进行脑肿瘤热疗的先进有限元模拟","authors":"Muhammad Suleman ,&nbsp;Arslan Mehmood ,&nbsp;Sami Ullah Khan ,&nbsp;Adnan ,&nbsp;Nermeen Abdullah ,&nbsp;Mouloud Aoudia ,&nbsp;Chemseddine Maatki ,&nbsp;Lioua Kolsi","doi":"10.1016/j.jrras.2025.101916","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Magnetic fluid hyperthermia using iron oxide nanoparticles holds promising approach for treating glioblastoma. However, conventional single-area nanoparticles face limitations in heating performance and retention in tumors, especially due to the particle length-superparamagnetic tradeoff. Polycrystalline Fe<sub>3</sub>O<sub>4</sub> super particles, clusters of ∼10–15 nm crystallites, hold superparamagnetic properties while dealing with specific absorption costs (SAR &gt;250 W/g) at low doses. <em>Objective</em>: The main objective of this study is to computationally examine the efficacy of polycrystalline Fe<sub>3</sub>O<sub>4</sub> super particles in hyperthermia of glioblastoma multiforme (GBM) tumors, leveraging finite-element method (FEM) simulations to demonstrate thermal distributions in the tumor and adjacent brain tissues under alternating magnetic field (AMF) exposure. Furthermore, investigating the impact of constant, linear, quadratic, and cubic heat sources for the best heat source in hyperthermia of Glioblastoma.</div></div><div><h3>Methodology</h3><div>Geometry and model setup with a 2D Finite Element Method (FEM) analysis representing a GBM tumor embedded in brain tissue will be discretized in COMSOL Multiphysics. The nanofluid flow and heat transfer through tissue are solved for concentration and temperature quantitatively.</div></div><div><h3>Results</h3><div>Super particle-mediated heating generates temperatures of 37–46 °C within clinically applicable AMF strengths. The heat generated by the MNPs is directly proportional to the frequency and amplitude of the applied magnetic field. Spatial and temporal temperature patterns from the simulation are better generated for the cubic heat source compared to the remaining heat sources. <em>Conclusions</em>: FEM-primarily based thermal simulations demonstrate that polycrystalline Fe<sub>3</sub>O<sub>4</sub> super particles can set off powerful and selective hyperthermia in GBM models. These MNPs are capable of damaging up to 95–99 % of the tumor. <em>Recommendation:</em> The integration of excessive SAR materials with realistic physiological modeling informs nanoparticle dose planning and AMF parameter optimization, representing a good-sized step toward translational hyperthermia protocols for glioblastoma treatment in real-time cancer treatments in hospitals.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"18 4","pages":"Article 101916"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced finite element simulations for brain tumor hyperthermia using polycrystalline Fe3O4 superparticles with optimized thermal radiation control\",\"authors\":\"Muhammad Suleman ,&nbsp;Arslan Mehmood ,&nbsp;Sami Ullah Khan ,&nbsp;Adnan ,&nbsp;Nermeen Abdullah ,&nbsp;Mouloud Aoudia ,&nbsp;Chemseddine Maatki ,&nbsp;Lioua Kolsi\",\"doi\":\"10.1016/j.jrras.2025.101916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Magnetic fluid hyperthermia using iron oxide nanoparticles holds promising approach for treating glioblastoma. However, conventional single-area nanoparticles face limitations in heating performance and retention in tumors, especially due to the particle length-superparamagnetic tradeoff. Polycrystalline Fe<sub>3</sub>O<sub>4</sub> super particles, clusters of ∼10–15 nm crystallites, hold superparamagnetic properties while dealing with specific absorption costs (SAR &gt;250 W/g) at low doses. <em>Objective</em>: The main objective of this study is to computationally examine the efficacy of polycrystalline Fe<sub>3</sub>O<sub>4</sub> super particles in hyperthermia of glioblastoma multiforme (GBM) tumors, leveraging finite-element method (FEM) simulations to demonstrate thermal distributions in the tumor and adjacent brain tissues under alternating magnetic field (AMF) exposure. Furthermore, investigating the impact of constant, linear, quadratic, and cubic heat sources for the best heat source in hyperthermia of Glioblastoma.</div></div><div><h3>Methodology</h3><div>Geometry and model setup with a 2D Finite Element Method (FEM) analysis representing a GBM tumor embedded in brain tissue will be discretized in COMSOL Multiphysics. The nanofluid flow and heat transfer through tissue are solved for concentration and temperature quantitatively.</div></div><div><h3>Results</h3><div>Super particle-mediated heating generates temperatures of 37–46 °C within clinically applicable AMF strengths. The heat generated by the MNPs is directly proportional to the frequency and amplitude of the applied magnetic field. Spatial and temporal temperature patterns from the simulation are better generated for the cubic heat source compared to the remaining heat sources. <em>Conclusions</em>: FEM-primarily based thermal simulations demonstrate that polycrystalline Fe<sub>3</sub>O<sub>4</sub> super particles can set off powerful and selective hyperthermia in GBM models. These MNPs are capable of damaging up to 95–99 % of the tumor. <em>Recommendation:</em> The integration of excessive SAR materials with realistic physiological modeling informs nanoparticle dose planning and AMF parameter optimization, representing a good-sized step toward translational hyperthermia protocols for glioblastoma treatment in real-time cancer treatments in hospitals.</div></div>\",\"PeriodicalId\":16920,\"journal\":{\"name\":\"Journal of Radiation Research and Applied Sciences\",\"volume\":\"18 4\",\"pages\":\"Article 101916\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiation Research and Applied Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1687850725006284\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850725006284","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

使用氧化铁纳米颗粒进行磁流体热疗是治疗胶质母细胞瘤的一种很有前途的方法。然而,传统的单区域纳米颗粒在加热性能和在肿瘤中的保留方面存在局限性,特别是由于颗粒长度与超顺磁的权衡。多晶Fe3O4超颗粒,约10-15 nm的晶体簇,在处理低剂量的比吸收成本(SAR >250 W/g)时保持超顺磁性。目的:本研究的主要目的是计算检验多晶Fe3O4超颗粒在多形性胶质母细胞瘤(GBM)肿瘤热疗中的效果,利用有限元法(FEM)模拟交变磁场(AMF)照射下肿瘤和邻近脑组织的热分布。此外,研究了恒定热源、线性热源、二次热源和三次热源对胶质母细胞瘤热疗最佳热源的影响。用二维有限元法(FEM)分析一个嵌入脑组织的GBM肿瘤,将在COMSOL Multiphysics中离散化几何结构和模型设置。定量求解了纳米流体在组织中的流动和传热的浓度和温度。结果超粒子介导的加热产生37-46°C的温度,在临床适用的AMF强度范围内。MNPs产生的热量与外加磁场的频率和振幅成正比。与其他热源相比,模拟得到的立方热源的时空温度模式更好。结论:基于fem的热模拟表明,多晶Fe3O4超颗粒可以在GBM模型中引发强效和选择性热疗。这些MNPs能够破坏高达95 - 99%的肿瘤。建议:将过量合成孔径雷达材料与真实的生理模型相结合,为纳米颗粒剂量规划和AMF参数优化提供了信息,代表着在医院实时癌症治疗中转化热疗胶质母细胞瘤治疗方案迈出了一大步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced finite element simulations for brain tumor hyperthermia using polycrystalline Fe3O4 superparticles with optimized thermal radiation control

Background

Magnetic fluid hyperthermia using iron oxide nanoparticles holds promising approach for treating glioblastoma. However, conventional single-area nanoparticles face limitations in heating performance and retention in tumors, especially due to the particle length-superparamagnetic tradeoff. Polycrystalline Fe3O4 super particles, clusters of ∼10–15 nm crystallites, hold superparamagnetic properties while dealing with specific absorption costs (SAR >250 W/g) at low doses. Objective: The main objective of this study is to computationally examine the efficacy of polycrystalline Fe3O4 super particles in hyperthermia of glioblastoma multiforme (GBM) tumors, leveraging finite-element method (FEM) simulations to demonstrate thermal distributions in the tumor and adjacent brain tissues under alternating magnetic field (AMF) exposure. Furthermore, investigating the impact of constant, linear, quadratic, and cubic heat sources for the best heat source in hyperthermia of Glioblastoma.

Methodology

Geometry and model setup with a 2D Finite Element Method (FEM) analysis representing a GBM tumor embedded in brain tissue will be discretized in COMSOL Multiphysics. The nanofluid flow and heat transfer through tissue are solved for concentration and temperature quantitatively.

Results

Super particle-mediated heating generates temperatures of 37–46 °C within clinically applicable AMF strengths. The heat generated by the MNPs is directly proportional to the frequency and amplitude of the applied magnetic field. Spatial and temporal temperature patterns from the simulation are better generated for the cubic heat source compared to the remaining heat sources. Conclusions: FEM-primarily based thermal simulations demonstrate that polycrystalline Fe3O4 super particles can set off powerful and selective hyperthermia in GBM models. These MNPs are capable of damaging up to 95–99 % of the tumor. Recommendation: The integration of excessive SAR materials with realistic physiological modeling informs nanoparticle dose planning and AMF parameter optimization, representing a good-sized step toward translational hyperthermia protocols for glioblastoma treatment in real-time cancer treatments in hospitals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信