微波烧结提高La3+掺杂BiFeO3-BaTiO3无铅压电陶瓷的压电性能

IF 5.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mukul Kumar , Varun Kamboj , Shubham Modgil , Arun Kumar Singh , Gyaneshwar Sharma , M.L.V. Mahesh , Sanjeev Kumar
{"title":"微波烧结提高La3+掺杂BiFeO3-BaTiO3无铅压电陶瓷的压电性能","authors":"Mukul Kumar ,&nbsp;Varun Kamboj ,&nbsp;Shubham Modgil ,&nbsp;Arun Kumar Singh ,&nbsp;Gyaneshwar Sharma ,&nbsp;M.L.V. Mahesh ,&nbsp;Sanjeev Kumar","doi":"10.1016/j.materresbull.2025.113751","DOIUrl":null,"url":null,"abstract":"<div><div>Piezoelectric energy harvesters (PEHs) have significant potential to provide a sustainable solution for low-grade energy harvesting and battery-less powering systems from physiological monitoring to internet-of-things applications. To access the performance of devices and the suitability of the material, figure-of-merit (FOM) are investigated. From an application perspective, lead-free ferroelectric materials with high figures of merit require enhancements in their ferroic functionalities. In this study, a balanced combination of properties is realized in BiFeO<sub>3</sub>–BaTiO<sub>3</sub> (BF-BT) ceramics through microwave sintering (MS) and precise La<sup>3+</sup> doping. This approach leverages the synergistic effects of optimizing grain size to enhance the electrostrictive coefficient and stabilizing the domain orientation via polar nanoregions (PNRs), resulting in outstanding electrical properties, including a high T<sub>C</sub> = 502 °C, d<sub>33</sub> = 191 pC/N, and FOM = 5888 × 10<sup>–15</sup> m<sup>2</sup>/N. These findings highlight the potential of MS-engineered BF-BT ceramics to meet the demands of advanced PEHs, opening new possibilities for creating wireless sensors which are self-powered and capable of operating in high-temperature surroundings.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"194 ","pages":"Article 113751"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced piezoelectric properties via microwave sintering in La3+- doped BiFeO3–BaTiO3 lead-free piezo-ceramics\",\"authors\":\"Mukul Kumar ,&nbsp;Varun Kamboj ,&nbsp;Shubham Modgil ,&nbsp;Arun Kumar Singh ,&nbsp;Gyaneshwar Sharma ,&nbsp;M.L.V. Mahesh ,&nbsp;Sanjeev Kumar\",\"doi\":\"10.1016/j.materresbull.2025.113751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Piezoelectric energy harvesters (PEHs) have significant potential to provide a sustainable solution for low-grade energy harvesting and battery-less powering systems from physiological monitoring to internet-of-things applications. To access the performance of devices and the suitability of the material, figure-of-merit (FOM) are investigated. From an application perspective, lead-free ferroelectric materials with high figures of merit require enhancements in their ferroic functionalities. In this study, a balanced combination of properties is realized in BiFeO<sub>3</sub>–BaTiO<sub>3</sub> (BF-BT) ceramics through microwave sintering (MS) and precise La<sup>3+</sup> doping. This approach leverages the synergistic effects of optimizing grain size to enhance the electrostrictive coefficient and stabilizing the domain orientation via polar nanoregions (PNRs), resulting in outstanding electrical properties, including a high T<sub>C</sub> = 502 °C, d<sub>33</sub> = 191 pC/N, and FOM = 5888 × 10<sup>–15</sup> m<sup>2</sup>/N. These findings highlight the potential of MS-engineered BF-BT ceramics to meet the demands of advanced PEHs, opening new possibilities for creating wireless sensors which are self-powered and capable of operating in high-temperature surroundings.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"194 \",\"pages\":\"Article 113751\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825004581\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825004581","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

压电能量收集器(PEHs)具有巨大的潜力,可以为从生理监测到物联网应用的低等级能量收集和无电池供电系统提供可持续的解决方案。为了获得器件的性能和材料的适用性,研究了性能图(FOM)。从应用的角度来看,具有高品质的无铅铁电材料需要增强其铁功能。在本研究中,通过微波烧结(MS)和精确的La3+掺杂,实现了BiFeO3-BaTiO3 (BF-BT)陶瓷性能的平衡组合。该方法利用优化晶粒尺寸的协同效应,通过极性纳米区(pnr)提高电致伸缩系数和稳定畴取向,从而获得出色的电学性能,包括高TC = 502°C, d33 = 191 pC/N, FOM = 5888 × 10-15 m2/N。这些发现突出了ms工程BF-BT陶瓷在满足先进PEHs需求方面的潜力,为创造自供电且能够在高温环境中工作的无线传感器开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced piezoelectric properties via microwave sintering in La3+- doped BiFeO3–BaTiO3 lead-free piezo-ceramics

Enhanced piezoelectric properties via microwave sintering in La3+- doped BiFeO3–BaTiO3 lead-free piezo-ceramics
Piezoelectric energy harvesters (PEHs) have significant potential to provide a sustainable solution for low-grade energy harvesting and battery-less powering systems from physiological monitoring to internet-of-things applications. To access the performance of devices and the suitability of the material, figure-of-merit (FOM) are investigated. From an application perspective, lead-free ferroelectric materials with high figures of merit require enhancements in their ferroic functionalities. In this study, a balanced combination of properties is realized in BiFeO3–BaTiO3 (BF-BT) ceramics through microwave sintering (MS) and precise La3+ doping. This approach leverages the synergistic effects of optimizing grain size to enhance the electrostrictive coefficient and stabilizing the domain orientation via polar nanoregions (PNRs), resulting in outstanding electrical properties, including a high TC = 502 °C, d33 = 191 pC/N, and FOM = 5888 × 10–15 m2/N. These findings highlight the potential of MS-engineered BF-BT ceramics to meet the demands of advanced PEHs, opening new possibilities for creating wireless sensors which are self-powered and capable of operating in high-temperature surroundings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信