Ying Geng , Guoyan Sun , Sheng Wang , Qingliang Zhao
{"title":"聚合物基弹性体粘弹性的可编程超声调制:实验和本构建模","authors":"Ying Geng , Guoyan Sun , Sheng Wang , Qingliang Zhao","doi":"10.1016/j.ultsonch.2025.107517","DOIUrl":null,"url":null,"abstract":"<div><div>One of the central challenges in soft matter mechanics is to achieve reversible and programmable modulation of viscoelasticity in polymer-based elastomers at small strains, which is crucial for precision engineering and advanced functional devices. Conventional approaches are constrained by irreversibility and lack of dynamic control. In this study, it is demonstrated that ultrasonic vibration (19–22 kHz) enables dynamic, reversible, and tunable modulation of the mechanical response in such materials. Uniaxial compression experiments combined with constitutive and inverse modeling reveal a reversible transition from viscoelastic, dissipative behavior to an elastic-dominated, stable state. The standard linear solid (SLS) model links macroscopic mechanical changes to molecular-level dynamics, such as chain alignment and mobility. Experimentally, ultrasonic vibration suppresses viscoelastic relaxation and energy dissipation, induces negative hysteresis, and enables tunable, reversible hardening, all strongly dependent on vibration frequency and power. Quantitatively, a typical 20% increase in the instantaneous elastic modulus and over 80% reduction in the delayed elastic modulus and viscosity are achieved under ultrasonic vibration. These results clarify the mechanism by which ultrasonic vibration regulates viscoelasticity and provide practical guidance for designing adaptive polymer systems in applications such as ultrasonic-assisted polishing, soft robotics, and flexible electronics.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"121 ","pages":"Article 107517"},"PeriodicalIF":9.7000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Programmable ultrasonic modulation of viscoelasticity in polymer-based elastomers: Experiments and constitutive modeling\",\"authors\":\"Ying Geng , Guoyan Sun , Sheng Wang , Qingliang Zhao\",\"doi\":\"10.1016/j.ultsonch.2025.107517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One of the central challenges in soft matter mechanics is to achieve reversible and programmable modulation of viscoelasticity in polymer-based elastomers at small strains, which is crucial for precision engineering and advanced functional devices. Conventional approaches are constrained by irreversibility and lack of dynamic control. In this study, it is demonstrated that ultrasonic vibration (19–22 kHz) enables dynamic, reversible, and tunable modulation of the mechanical response in such materials. Uniaxial compression experiments combined with constitutive and inverse modeling reveal a reversible transition from viscoelastic, dissipative behavior to an elastic-dominated, stable state. The standard linear solid (SLS) model links macroscopic mechanical changes to molecular-level dynamics, such as chain alignment and mobility. Experimentally, ultrasonic vibration suppresses viscoelastic relaxation and energy dissipation, induces negative hysteresis, and enables tunable, reversible hardening, all strongly dependent on vibration frequency and power. Quantitatively, a typical 20% increase in the instantaneous elastic modulus and over 80% reduction in the delayed elastic modulus and viscosity are achieved under ultrasonic vibration. These results clarify the mechanism by which ultrasonic vibration regulates viscoelasticity and provide practical guidance for designing adaptive polymer systems in applications such as ultrasonic-assisted polishing, soft robotics, and flexible electronics.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"121 \",\"pages\":\"Article 107517\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417725002962\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417725002962","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Programmable ultrasonic modulation of viscoelasticity in polymer-based elastomers: Experiments and constitutive modeling
One of the central challenges in soft matter mechanics is to achieve reversible and programmable modulation of viscoelasticity in polymer-based elastomers at small strains, which is crucial for precision engineering and advanced functional devices. Conventional approaches are constrained by irreversibility and lack of dynamic control. In this study, it is demonstrated that ultrasonic vibration (19–22 kHz) enables dynamic, reversible, and tunable modulation of the mechanical response in such materials. Uniaxial compression experiments combined with constitutive and inverse modeling reveal a reversible transition from viscoelastic, dissipative behavior to an elastic-dominated, stable state. The standard linear solid (SLS) model links macroscopic mechanical changes to molecular-level dynamics, such as chain alignment and mobility. Experimentally, ultrasonic vibration suppresses viscoelastic relaxation and energy dissipation, induces negative hysteresis, and enables tunable, reversible hardening, all strongly dependent on vibration frequency and power. Quantitatively, a typical 20% increase in the instantaneous elastic modulus and over 80% reduction in the delayed elastic modulus and viscosity are achieved under ultrasonic vibration. These results clarify the mechanism by which ultrasonic vibration regulates viscoelasticity and provide practical guidance for designing adaptive polymer systems in applications such as ultrasonic-assisted polishing, soft robotics, and flexible electronics.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.