{"title":"无嫉妒分配的最优补贴界限","authors":"Yasushi Kawase , Kazuhisa Makino , Hanna Sumita , Akihisa Tamura , Makoto Yokoo","doi":"10.1016/j.artint.2025.104406","DOIUrl":null,"url":null,"abstract":"<div><div>We study the fair division of indivisible items with subsidies among <em>n</em> agents, where the absolute marginal valuation of each item is at most one. Under monotone nondecreasing valuations (where each item is a good), Brustle et al. <span><span>[9]</span></span> demonstrated that a maximum subsidy of <span><math><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> and a total subsidy of <span><math><mn>2</mn><msup><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> are sufficient to guarantee the existence of an envy-freeable allocation. In this paper, we improve upon these bounds, even in a wider model. Namely, we show that, given an EF1 allocation, we can compute in polynomial time an envy-free allocation with a subsidy of at most <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span> per agent and a total subsidy of at most <span><math><mi>n</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>. Moreover, when the valuations are monotone nondecreasing, we provide a polynomial-time algorithm that computes an envy-free allocation with a subsidy of at most <span><math><mi>n</mi><mo>−</mo><mn>1.5</mn></math></span> per agent and a total subsidy of at most <span><math><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"348 ","pages":"Article 104406"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards optimal subsidy bounds for envy-freeable allocations\",\"authors\":\"Yasushi Kawase , Kazuhisa Makino , Hanna Sumita , Akihisa Tamura , Makoto Yokoo\",\"doi\":\"10.1016/j.artint.2025.104406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the fair division of indivisible items with subsidies among <em>n</em> agents, where the absolute marginal valuation of each item is at most one. Under monotone nondecreasing valuations (where each item is a good), Brustle et al. <span><span>[9]</span></span> demonstrated that a maximum subsidy of <span><math><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> and a total subsidy of <span><math><mn>2</mn><msup><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> are sufficient to guarantee the existence of an envy-freeable allocation. In this paper, we improve upon these bounds, even in a wider model. Namely, we show that, given an EF1 allocation, we can compute in polynomial time an envy-free allocation with a subsidy of at most <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span> per agent and a total subsidy of at most <span><math><mi>n</mi><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>. Moreover, when the valuations are monotone nondecreasing, we provide a polynomial-time algorithm that computes an envy-free allocation with a subsidy of at most <span><math><mi>n</mi><mo>−</mo><mn>1.5</mn></math></span> per agent and a total subsidy of at most <span><math><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></math></span>.</div></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"348 \",\"pages\":\"Article 104406\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370225001250\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370225001250","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Towards optimal subsidy bounds for envy-freeable allocations
We study the fair division of indivisible items with subsidies among n agents, where the absolute marginal valuation of each item is at most one. Under monotone nondecreasing valuations (where each item is a good), Brustle et al. [9] demonstrated that a maximum subsidy of and a total subsidy of are sufficient to guarantee the existence of an envy-freeable allocation. In this paper, we improve upon these bounds, even in a wider model. Namely, we show that, given an EF1 allocation, we can compute in polynomial time an envy-free allocation with a subsidy of at most per agent and a total subsidy of at most . Moreover, when the valuations are monotone nondecreasing, we provide a polynomial-time algorithm that computes an envy-free allocation with a subsidy of at most per agent and a total subsidy of at most .
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.