{"title":"芳香族二醇界面缩聚制备聚氨酯缓释微胶囊","authors":"Prashant Yadav , Aniruddha Ravikumar , Ashootosh V. Ambade , Kadhiravan Shanmuganathan","doi":"10.1016/j.reactfunctpolym.2025.106460","DOIUrl":null,"url":null,"abstract":"<div><div>Polyurea-urethane (PUU) microcapsules prepared via interfacial polymerization have gained significant interest due to their tunable size and membrane thickness, high loading efficiency, and scalability. Although several aromatic and aliphatic diols and polyols have been used to produce PU foams and films, the use of aromatic diols to synthesize PUU MICs via interfacial polymerization is an unexplored domain due to the restricted solubility of aromatic diols in water. This report highlights the successful preparation of PUU microcapsules using an aromatic diol (benzene-1,4-dimethanol, BDM) to encapsulate dimethyl phthalate (DMP), a model insect repellent. The developed PUU microcapsules exhibited a high % encapsulation efficiency of 92 % and a size range of 1–20 μm. Differential scanning calorimetry (DSC) thermograms revealed a significantly high glass transition temperature (T<sub>g</sub>) of 143 °C as compared to 108 °C in the case of PUU MICs with aliphatic diols. Release studies confirm enhanced barrier properties for aromatic diol-based MICs as compared to aliphatic ethylene glycol-based PUU MICs, and interpretation of the release profile using the Weibull Model reveals that Fickian diffusion is the dominant mechanism in the release of DMP. These microcapsules can be used in high-performance applications such as composites, coatings, electronics, and construction.</div></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":"216 ","pages":"Article 106460"},"PeriodicalIF":5.1000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustained release polyurethane microcapsules by interfacial polycondensation using aromatic diols\",\"authors\":\"Prashant Yadav , Aniruddha Ravikumar , Ashootosh V. Ambade , Kadhiravan Shanmuganathan\",\"doi\":\"10.1016/j.reactfunctpolym.2025.106460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polyurea-urethane (PUU) microcapsules prepared via interfacial polymerization have gained significant interest due to their tunable size and membrane thickness, high loading efficiency, and scalability. Although several aromatic and aliphatic diols and polyols have been used to produce PU foams and films, the use of aromatic diols to synthesize PUU MICs via interfacial polymerization is an unexplored domain due to the restricted solubility of aromatic diols in water. This report highlights the successful preparation of PUU microcapsules using an aromatic diol (benzene-1,4-dimethanol, BDM) to encapsulate dimethyl phthalate (DMP), a model insect repellent. The developed PUU microcapsules exhibited a high % encapsulation efficiency of 92 % and a size range of 1–20 μm. Differential scanning calorimetry (DSC) thermograms revealed a significantly high glass transition temperature (T<sub>g</sub>) of 143 °C as compared to 108 °C in the case of PUU MICs with aliphatic diols. Release studies confirm enhanced barrier properties for aromatic diol-based MICs as compared to aliphatic ethylene glycol-based PUU MICs, and interpretation of the release profile using the Weibull Model reveals that Fickian diffusion is the dominant mechanism in the release of DMP. These microcapsules can be used in high-performance applications such as composites, coatings, electronics, and construction.</div></div>\",\"PeriodicalId\":20916,\"journal\":{\"name\":\"Reactive & Functional Polymers\",\"volume\":\"216 \",\"pages\":\"Article 106460\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reactive & Functional Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381514825003128\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514825003128","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Sustained release polyurethane microcapsules by interfacial polycondensation using aromatic diols
Polyurea-urethane (PUU) microcapsules prepared via interfacial polymerization have gained significant interest due to their tunable size and membrane thickness, high loading efficiency, and scalability. Although several aromatic and aliphatic diols and polyols have been used to produce PU foams and films, the use of aromatic diols to synthesize PUU MICs via interfacial polymerization is an unexplored domain due to the restricted solubility of aromatic diols in water. This report highlights the successful preparation of PUU microcapsules using an aromatic diol (benzene-1,4-dimethanol, BDM) to encapsulate dimethyl phthalate (DMP), a model insect repellent. The developed PUU microcapsules exhibited a high % encapsulation efficiency of 92 % and a size range of 1–20 μm. Differential scanning calorimetry (DSC) thermograms revealed a significantly high glass transition temperature (Tg) of 143 °C as compared to 108 °C in the case of PUU MICs with aliphatic diols. Release studies confirm enhanced barrier properties for aromatic diol-based MICs as compared to aliphatic ethylene glycol-based PUU MICs, and interpretation of the release profile using the Weibull Model reveals that Fickian diffusion is the dominant mechanism in the release of DMP. These microcapsules can be used in high-performance applications such as composites, coatings, electronics, and construction.
期刊介绍:
Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers.
Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.