基于分级镍基催化剂的cfd引导下CH4/H2/NH3混合物的催化燃烧优化:对NOx减排和效率提高的见解

IF 7.7 2区 工程技术 Q1 CHEMISTRY, APPLIED
Muhammad Mubashir , Dekui Shen , Muhammad Aurangzeb , Sheeraz Iqbal , Md Shafiullah , Aymen Flah , Habib Kraiem
{"title":"基于分级镍基催化剂的cfd引导下CH4/H2/NH3混合物的催化燃烧优化:对NOx减排和效率提高的见解","authors":"Muhammad Mubashir ,&nbsp;Dekui Shen ,&nbsp;Muhammad Aurangzeb ,&nbsp;Sheeraz Iqbal ,&nbsp;Md Shafiullah ,&nbsp;Aymen Flah ,&nbsp;Habib Kraiem","doi":"10.1016/j.fuproc.2025.108315","DOIUrl":null,"url":null,"abstract":"<div><div>The decarbonization of industrial combustion systems demands fuel strategies that reduce greenhouse gas emissions while maintaining high efficiency and operational stability. This study explores the catalytic combustion behavior of ternary CH<sub>4</sub>/H<sub>2</sub>/NH<sub>3</sub> fuel blends using high-fidelity Large Eddy Simulation (LES) integrated with a validated reduced chemical mechanism (51 species, 420 reactions). The focus is to overcome ammonia's inherent limitations: low reactivity, high ignition temperature (&gt; 650 °C), and elevated NO<sub>x</sub> formation, by leveraging catalytic surface interactions. A novel staged catalyst configuration based on Ni-Cu/Fe<sub>2</sub>O<sub>3</sub> is proposed, with upstream NH<sub>3</sub> decomposition and downstream NO<sub>x</sub> reduction zones. Parametric simulations reveal that a 30:30:40 volumetric fuel blend (CH<sub>4</sub>:H<sub>2</sub>:NH<sub>3</sub>) achieves optimal performance, yielding combustion efficiency above 97 %, NO<sub>x</sub> emissions below 30 ppm, and NH<sub>3</sub> slip under 15 ppm. Catalyst staging improves performance over uniform coating, reducing NO<sub>x</sub> by 79.3 % and NH<sub>3</sub> slip by 56.1 %. Stability maps indicate extended flame anchoring over a wide equivalence ratio range (0.65–1.1) and inlet velocities up to 25 m/s. A comprehensive reaction pathway analysis attributes 65 % of NO<sub>x</sub> to fuel NO, 25 % to thermal NO, and 10 % to prompt NO mechanisms. Catalytic activity proves most effective within the 550–650 K surface temperature window. The results highlight a scalable pathway for integrating catalytic combustion in low-carbon energy systems and establish a foundation for future experimental validation. This work offers practical insight for transitioning toward cleaner combustion technologies, particularly in ammonia-assisted hybrid fuels for advanced burners, reformers, and industrial heating applications.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"277 ","pages":"Article 108315"},"PeriodicalIF":7.7000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD-guided catalytic combustion optimization of CH4/H2/NH3 blends using staged Ni-based catalysts: Insights into NOx mitigation and efficiency enhancement\",\"authors\":\"Muhammad Mubashir ,&nbsp;Dekui Shen ,&nbsp;Muhammad Aurangzeb ,&nbsp;Sheeraz Iqbal ,&nbsp;Md Shafiullah ,&nbsp;Aymen Flah ,&nbsp;Habib Kraiem\",\"doi\":\"10.1016/j.fuproc.2025.108315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The decarbonization of industrial combustion systems demands fuel strategies that reduce greenhouse gas emissions while maintaining high efficiency and operational stability. This study explores the catalytic combustion behavior of ternary CH<sub>4</sub>/H<sub>2</sub>/NH<sub>3</sub> fuel blends using high-fidelity Large Eddy Simulation (LES) integrated with a validated reduced chemical mechanism (51 species, 420 reactions). The focus is to overcome ammonia's inherent limitations: low reactivity, high ignition temperature (&gt; 650 °C), and elevated NO<sub>x</sub> formation, by leveraging catalytic surface interactions. A novel staged catalyst configuration based on Ni-Cu/Fe<sub>2</sub>O<sub>3</sub> is proposed, with upstream NH<sub>3</sub> decomposition and downstream NO<sub>x</sub> reduction zones. Parametric simulations reveal that a 30:30:40 volumetric fuel blend (CH<sub>4</sub>:H<sub>2</sub>:NH<sub>3</sub>) achieves optimal performance, yielding combustion efficiency above 97 %, NO<sub>x</sub> emissions below 30 ppm, and NH<sub>3</sub> slip under 15 ppm. Catalyst staging improves performance over uniform coating, reducing NO<sub>x</sub> by 79.3 % and NH<sub>3</sub> slip by 56.1 %. Stability maps indicate extended flame anchoring over a wide equivalence ratio range (0.65–1.1) and inlet velocities up to 25 m/s. A comprehensive reaction pathway analysis attributes 65 % of NO<sub>x</sub> to fuel NO, 25 % to thermal NO, and 10 % to prompt NO mechanisms. Catalytic activity proves most effective within the 550–650 K surface temperature window. The results highlight a scalable pathway for integrating catalytic combustion in low-carbon energy systems and establish a foundation for future experimental validation. This work offers practical insight for transitioning toward cleaner combustion technologies, particularly in ammonia-assisted hybrid fuels for advanced burners, reformers, and industrial heating applications.</div></div>\",\"PeriodicalId\":326,\"journal\":{\"name\":\"Fuel Processing Technology\",\"volume\":\"277 \",\"pages\":\"Article 108315\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Processing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378382025001390\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382025001390","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

工业燃烧系统的脱碳要求燃料策略在保持高效率和运行稳定性的同时减少温室气体排放。本研究利用高保真大涡模拟(LES)技术,结合已验证的还原化学机制(51种,420种反应),探索了三元CH4/H2/NH3燃料混合物的催化燃烧行为。重点是通过利用催化表面相互作用来克服氨的固有局限性:低反应性、高点火温度(> 650°C)和高NOx生成。提出了一种基于Ni-Cu/Fe2O3的新型分级催化剂结构,上游有NH3分解区,下游有NOx还原区。参数模拟表明,体积配比为30:30:40的燃料混合物(CH4:H2:NH3)达到了最佳性能,燃烧效率超过97%,NOx排放低于30 ppm, NH3滑脱低于15 ppm。催化剂分级改善了均匀涂层的性能,减少了79.3%的氮氧化物和56.1%的NH3滑移。稳定性图显示火焰锚定在宽等效比范围内(0.65-1.1),入口速度可达25米/秒。综合反应途径分析认为,65%的NOx来自燃料NO, 25%来自热NO, 10%来自促NO机制。在550-650 K的表面温度窗内,催化活性最有效。研究结果强调了在低碳能源系统中整合催化燃烧的可扩展途径,并为未来的实验验证奠定了基础。这项工作为向更清洁的燃烧技术过渡提供了实际的见解,特别是在氨辅助混合燃料的先进燃烧器,转化炉和工业加热应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFD-guided catalytic combustion optimization of CH4/H2/NH3 blends using staged Ni-based catalysts: Insights into NOx mitigation and efficiency enhancement
The decarbonization of industrial combustion systems demands fuel strategies that reduce greenhouse gas emissions while maintaining high efficiency and operational stability. This study explores the catalytic combustion behavior of ternary CH4/H2/NH3 fuel blends using high-fidelity Large Eddy Simulation (LES) integrated with a validated reduced chemical mechanism (51 species, 420 reactions). The focus is to overcome ammonia's inherent limitations: low reactivity, high ignition temperature (> 650 °C), and elevated NOx formation, by leveraging catalytic surface interactions. A novel staged catalyst configuration based on Ni-Cu/Fe2O3 is proposed, with upstream NH3 decomposition and downstream NOx reduction zones. Parametric simulations reveal that a 30:30:40 volumetric fuel blend (CH4:H2:NH3) achieves optimal performance, yielding combustion efficiency above 97 %, NOx emissions below 30 ppm, and NH3 slip under 15 ppm. Catalyst staging improves performance over uniform coating, reducing NOx by 79.3 % and NH3 slip by 56.1 %. Stability maps indicate extended flame anchoring over a wide equivalence ratio range (0.65–1.1) and inlet velocities up to 25 m/s. A comprehensive reaction pathway analysis attributes 65 % of NOx to fuel NO, 25 % to thermal NO, and 10 % to prompt NO mechanisms. Catalytic activity proves most effective within the 550–650 K surface temperature window. The results highlight a scalable pathway for integrating catalytic combustion in low-carbon energy systems and establish a foundation for future experimental validation. This work offers practical insight for transitioning toward cleaner combustion technologies, particularly in ammonia-assisted hybrid fuels for advanced burners, reformers, and industrial heating applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel Processing Technology
Fuel Processing Technology 工程技术-工程:化工
CiteScore
13.20
自引率
9.30%
发文量
398
审稿时长
26 days
期刊介绍: Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信