特殊完整非紧流形中经特殊截面扭转的标定子束变形

IF 1.2 3区 数学 Q1 MATHEMATICS
Romy Marie Merkel
{"title":"特殊完整非紧流形中经特殊截面扭转的标定子束变形","authors":"Romy Marie Merkel","doi":"10.1016/j.geomphys.2025.105631","DOIUrl":null,"url":null,"abstract":"<div><div>We study special Lagrangian submanifolds in the Calabi–Yau manifold <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with the Stenzel metric, as well as calibrated submanifolds in the <span><math><msub><mrow><mtext>G</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span>-manifold <span><math><msubsup><mrow><mi>Λ</mi></mrow><mrow><mo>−</mo></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>X</mi><mo>)</mo></math></span> <span><math><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>=</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>,</mo><msup><mrow><mi>CP</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> and the <span><math><mtext>Spin</mtext><mo>(</mo><mn>7</mn><mo>)</mo></math></span>-manifold <figure><img></figure>, both equipped with the Bryant–Salamon metrics. We twist naturally defined calibrated subbundles by sections of the complementary bundles and derive conditions for the deformations to be calibrated. We find that twisting the conormal bundle <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>L</mi></math></span> of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>⊂</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> by a 1-form <span><math><mi>μ</mi><mo>∈</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>L</mi><mo>)</mo></math></span> does not provide any new examples because the Lagrangian condition requires <em>μ</em> to vanish. Furthermore, we prove that the twisted bundles in the <span><math><msub><mrow><mtext>G</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span>- and <span><math><mtext>Spin</mtext><mo>(</mo><mn>7</mn><mo>)</mo></math></span>-manifolds are associative (coassociative) and Cayley, respectively, if the base is minimal (negative superminimal) and the section holomorphic (parallel). This demonstrates that the (co-)associative and Cayley subbundles allow deformations destroying the linear structure of the fiber, while the base space remains of the same type after twisting. While the results for the two spaces of exceptional holonomy are in line with the findings in Euclidean spaces established by Karigiannis and Leung (2012), the special Lagrangian bundle construction in <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is much more rigid than in the case of <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"217 ","pages":"Article 105631"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformations of calibrated subbundles in noncompact manifolds of special holonomy via twisting by special sections\",\"authors\":\"Romy Marie Merkel\",\"doi\":\"10.1016/j.geomphys.2025.105631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study special Lagrangian submanifolds in the Calabi–Yau manifold <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with the Stenzel metric, as well as calibrated submanifolds in the <span><math><msub><mrow><mtext>G</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span>-manifold <span><math><msubsup><mrow><mi>Λ</mi></mrow><mrow><mo>−</mo></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>X</mi><mo>)</mo></math></span> <span><math><mo>(</mo><msup><mrow><mi>X</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>=</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>,</mo><msup><mrow><mi>CP</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> and the <span><math><mtext>Spin</mtext><mo>(</mo><mn>7</mn><mo>)</mo></math></span>-manifold <figure><img></figure>, both equipped with the Bryant–Salamon metrics. We twist naturally defined calibrated subbundles by sections of the complementary bundles and derive conditions for the deformations to be calibrated. We find that twisting the conormal bundle <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>L</mi></math></span> of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>⊂</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> by a 1-form <span><math><mi>μ</mi><mo>∈</mo><msup><mrow><mi>Ω</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>L</mi><mo>)</mo></math></span> does not provide any new examples because the Lagrangian condition requires <em>μ</em> to vanish. Furthermore, we prove that the twisted bundles in the <span><math><msub><mrow><mtext>G</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span>- and <span><math><mtext>Spin</mtext><mo>(</mo><mn>7</mn><mo>)</mo></math></span>-manifolds are associative (coassociative) and Cayley, respectively, if the base is minimal (negative superminimal) and the section holomorphic (parallel). This demonstrates that the (co-)associative and Cayley subbundles allow deformations destroying the linear structure of the fiber, while the base space remains of the same type after twisting. While the results for the two spaces of exceptional holonomy are in line with the findings in Euclidean spaces established by Karigiannis and Leung (2012), the special Lagrangian bundle construction in <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is much more rigid than in the case of <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"217 \",\"pages\":\"Article 105631\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044025002153\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025002153","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有Stenzel度量的Calabi-Yau流形T Sn中的特殊拉格朗日子流形,以及具有Bryant-Salamon度量的g2流形Λ−2(T X) (X4=S4,CP2)和Spin(7)-流形中的校准子流形。我们通过互补束的部分扭曲自然定义的校准子束,并推导出要校准的变形的条件。我们发现,将Lq∧Sn的法向束N L以1-形式μ∈Ω1(L)扭转并不能提供任何新的例子,因为拉格朗日条件要求μ消失。进一步证明了在基极小(负超极小)和截面全纯(平行)的情况下,G2-和Spin(7)-流形中的扭束分别是结合的(协协的)和Cayley的。这表明(共)缔合和Cayley亚束允许变形破坏纤维的线性结构,而基底空间在扭转后仍保持相同类型。虽然这两个特殊完整空间的结果与Karigiannis和Leung(2012)在欧几里得空间中的发现一致,但T Sn中的特殊拉格朗日束构造比T Rn中的刚性要大得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformations of calibrated subbundles in noncompact manifolds of special holonomy via twisting by special sections
We study special Lagrangian submanifolds in the Calabi–Yau manifold TSn with the Stenzel metric, as well as calibrated submanifolds in the G2-manifold Λ2(TX) (X4=S4,CP2) and the Spin(7)-manifold
, both equipped with the Bryant–Salamon metrics. We twist naturally defined calibrated subbundles by sections of the complementary bundles and derive conditions for the deformations to be calibrated. We find that twisting the conormal bundle NL of LqSn by a 1-form μΩ1(L) does not provide any new examples because the Lagrangian condition requires μ to vanish. Furthermore, we prove that the twisted bundles in the G2- and Spin(7)-manifolds are associative (coassociative) and Cayley, respectively, if the base is minimal (negative superminimal) and the section holomorphic (parallel). This demonstrates that the (co-)associative and Cayley subbundles allow deformations destroying the linear structure of the fiber, while the base space remains of the same type after twisting. While the results for the two spaces of exceptional holonomy are in line with the findings in Euclidean spaces established by Karigiannis and Leung (2012), the special Lagrangian bundle construction in TSn is much more rigid than in the case of TRn.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信