量子点发光二极管中基于ZnO纳米粒子的电子输运层的偶极子修饰

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yin-Man Song, Meng-Wei Wang, Hang Liu, Ting Ding, Jing Jiang, Pei-Li Gao*, Kar Wei Ng* and Shuang-Peng Wang*, 
{"title":"量子点发光二极管中基于ZnO纳米粒子的电子输运层的偶极子修饰","authors":"Yin-Man Song,&nbsp;Meng-Wei Wang,&nbsp;Hang Liu,&nbsp;Ting Ding,&nbsp;Jing Jiang,&nbsp;Pei-Li Gao*,&nbsp;Kar Wei Ng* and Shuang-Peng Wang*,&nbsp;","doi":"10.1021/acsanm.5c03469","DOIUrl":null,"url":null,"abstract":"<p >Charge transport represents a critical determinant for achieving high-performance quantum dot light-emitting diodes. In conventional sandwich-structured devices, interfacial state formation due to mismatched material properties across functional layers compromises carrier transport and recombination dynamics. Here, we demonstrate a surface state engineering strategy for ZnO nanoparticles (NPs)-based electron transport layers (ETLs) via sequential ozone treatment and 2-hexanol spin coating. Solution-prepared ZnO NPs possess a large surface area and abundant surface defect states. This approach achieves atomic-scale modification of the ETL/quantum dot (QD) interface without introducing additional dielectric layers, thereby mitigating carrier loss from the defect states. The results reveal that anchored 2-hexanol molecules reconfigure the surface dipole moment of the ZnO NP film, introducing an elevated vacuum level alignment, which facilitates efficient electron injection while concomitantly suppressing exciton quenching at the ETL/QD interface. The optimized device achieves an 11% improvement in the device’s maximum power efficiency (from 16.1 to 17.9 lm/W) and about 3-fold extension in operational lifetime (from 8 to 26 h) at an initial luminance of 2000 cd/m<sup>2</sup>. This surface modification strategy for ZnO NPs highlights the significance of ETL/QD interface engineering and provides a feasible solution for device optimization.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 34","pages":"16955–16962"},"PeriodicalIF":5.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsanm.5c03469","citationCount":"0","resultStr":"{\"title\":\"Dipole Decoration of ZnO Nanoparticle-Based Electron Transport Layer for Efficient Electron Injection in Quantum Dot Light-Emitting Diodes\",\"authors\":\"Yin-Man Song,&nbsp;Meng-Wei Wang,&nbsp;Hang Liu,&nbsp;Ting Ding,&nbsp;Jing Jiang,&nbsp;Pei-Li Gao*,&nbsp;Kar Wei Ng* and Shuang-Peng Wang*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c03469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Charge transport represents a critical determinant for achieving high-performance quantum dot light-emitting diodes. In conventional sandwich-structured devices, interfacial state formation due to mismatched material properties across functional layers compromises carrier transport and recombination dynamics. Here, we demonstrate a surface state engineering strategy for ZnO nanoparticles (NPs)-based electron transport layers (ETLs) via sequential ozone treatment and 2-hexanol spin coating. Solution-prepared ZnO NPs possess a large surface area and abundant surface defect states. This approach achieves atomic-scale modification of the ETL/quantum dot (QD) interface without introducing additional dielectric layers, thereby mitigating carrier loss from the defect states. The results reveal that anchored 2-hexanol molecules reconfigure the surface dipole moment of the ZnO NP film, introducing an elevated vacuum level alignment, which facilitates efficient electron injection while concomitantly suppressing exciton quenching at the ETL/QD interface. The optimized device achieves an 11% improvement in the device’s maximum power efficiency (from 16.1 to 17.9 lm/W) and about 3-fold extension in operational lifetime (from 8 to 26 h) at an initial luminance of 2000 cd/m<sup>2</sup>. This surface modification strategy for ZnO NPs highlights the significance of ETL/QD interface engineering and provides a feasible solution for device optimization.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 34\",\"pages\":\"16955–16962\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsanm.5c03469\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c03469\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c03469","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电荷输运是实现高性能量子点发光二极管的关键决定因素。在传统的三明治结构器件中,由于功能层之间材料特性不匹配而形成的界面态损害了载流子传输和重组动力学。在这里,我们展示了一种基于ZnO纳米粒子(NPs)的电子传输层(ETLs)的表面态工程策略,该策略通过顺序臭氧处理和2-己醇自旋涂层。溶液制备的ZnO纳米粒子具有较大的表面积和丰富的表面缺陷态。该方法在不引入额外介电层的情况下实现了ETL/量子点(QD)界面的原子尺度修饰,从而减轻了缺陷态的载流子损耗。结果表明,锚定的2-己醇分子重新配置了ZnO NP膜的表面偶极矩,引入了更高的真空水平取向,促进了有效的电子注入,同时抑制了ETL/QD界面上的激子猝灭。优化后的器件在初始亮度为2000 cd/m2时,器件的最大功率效率提高了11%(从16.1 lm/W提高到17.9 lm/W),工作寿命延长了约3倍(从8小时延长到26小时)。这种ZnO纳米粒子的表面修饰策略突出了ETL/QD界面工程的重要性,为器件优化提供了可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dipole Decoration of ZnO Nanoparticle-Based Electron Transport Layer for Efficient Electron Injection in Quantum Dot Light-Emitting Diodes

Charge transport represents a critical determinant for achieving high-performance quantum dot light-emitting diodes. In conventional sandwich-structured devices, interfacial state formation due to mismatched material properties across functional layers compromises carrier transport and recombination dynamics. Here, we demonstrate a surface state engineering strategy for ZnO nanoparticles (NPs)-based electron transport layers (ETLs) via sequential ozone treatment and 2-hexanol spin coating. Solution-prepared ZnO NPs possess a large surface area and abundant surface defect states. This approach achieves atomic-scale modification of the ETL/quantum dot (QD) interface without introducing additional dielectric layers, thereby mitigating carrier loss from the defect states. The results reveal that anchored 2-hexanol molecules reconfigure the surface dipole moment of the ZnO NP film, introducing an elevated vacuum level alignment, which facilitates efficient electron injection while concomitantly suppressing exciton quenching at the ETL/QD interface. The optimized device achieves an 11% improvement in the device’s maximum power efficiency (from 16.1 to 17.9 lm/W) and about 3-fold extension in operational lifetime (from 8 to 26 h) at an initial luminance of 2000 cd/m2. This surface modification strategy for ZnO NPs highlights the significance of ETL/QD interface engineering and provides a feasible solution for device optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信